• Advanced Photonics Nexus
  • Vol. 3, Issue 2, 026010 (2024)
Su Wu1、†, Chan Huang2, Jing Lin3, Tao Wang1、4, Shanshan Zheng1、4, Haisheng Feng1、4, and Lei Yu1、*
Author Affiliations
  • 1Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, China
  • 2Hefei University of Technology, School of Physics, Department of Optical Engineering, Hefei, China
  • 3Hefei Normal University, Department of Chemical and Chemical Engineering, Hefei, China
  • 4University of Science and Technology of China, Science Island Branch of Graduate School, Hefei, China
  • show less
    DOI: 10.1117/1.APN.3.2.026010 Cite this Article Set citation alerts
    Su Wu, Chan Huang, Jing Lin, Tao Wang, Shanshan Zheng, Haisheng Feng, Lei Yu. Physics-constrained deep-inverse point spread function model: toward non-line-of-sight imaging reconstruction[J]. Advanced Photonics Nexus, 2024, 3(2): 026010 Copy Citation Text show less
    References

    [1] X. Liu et al. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620-623(2019).

    [2] B. David et al. Wave-based non-line-of-sight imaging using fast f-k migration. ACM Trans. Graph., 38, 116(2019).

    [3] T. Maeda et al. Thermal non-line-of-sight imaging, 1-11(2019).

    [4] Y. Altmann et al. Quantum-inspired computational imaging. Science, 361, eaat2298(2018).

    [5] W. Yang et al. None-line-of-sight imaging enhanced with spatial multiplexing. Opt. Express, 30, 5855-5867(2022).

    [6] J. H. Nam et al. Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second. Nat. Commun., 12, 6526(2021).

    [7] F. Heide et al. Non-line-of-sight imaging with partial occluders and surface normals. ACM Trans. Graph., 38, 1-10(2019).

    [8] C. Saunders, J. Murray-Bruce, V. K. Goyal. Computational periscopy with an ordinary digital camera. Nature, 565, 472(2019).

    [9] J. Liu et al. Photon-efficient non-line-of-sight imaging. IEEE Trans. Comput. Imaging, 8, 639-650(2022).

    [10] D. Faccio, A. Velten, G. Wetzstein. Non-line-of-sight imaging. Nat. Rev. Phys., 2, 318-327(2020).

    [11] F. Mu et al. Physics to the rescue: deep non-line-of-sight reconstruction for high-speed imaging. IEEE Trans. Pattern Anal. Mach. Intell., 1-12(2022).

    [12] T. Maeda et al. Recent advances in imaging around corners(2019).

    [13] C. A. Metzler, D. B. Lindell, G. Wetzstein. Keyhole imaging: non-line-of-sight imaging and tracking of moving objects along a single optical path. IEEE Trans. Comput. Imaging, 7, 1-12(2020).

    [14] D. Zhu, W. Cai. Fast non-line-of-sight imaging with two-step deep remapping. ACS Photonics, 9, 2046-2055(2022).

    [15] A. Kirmani et al. Looking around the corner using transient imaging, 159-166(2009).

    [16] A. Velten et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, 745(2012).

    [17] M. O’Toole, D. B. Lindell, G. Wetzstein. Real-time non-line-of-sight imaging, 1-2(2018).

    [18] M. O’Toole, D. B. Lindell, G. Wetzstein. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555, 338-341(2018).

    [19] S. I. Young et al. Non-line-of-sight surface reconstruction using the directional light-cone transform, 1407-1416(2020).

    [20] X. Liu, S. Bauer, A. Velten. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nat. Commun., 11, 1645(2020).

    [21] W. Chen et al. Steady-state non-line-of-sight imaging, 6790-6799(2019).

    [22] C. A. Metzler et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica, 7, 63-71(2020).

    [23] S. Tong, A. M. Alessio, P. E. Kinahan. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys. Med. Biol., 55, 1453(2010).

    [24] J. D. Rego, K. Kulkarni, S. Jayasuriya. Robust lensless image reconstruction via PSF estimation, 403-412(2021).

    [25] G. Demoment. Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Process., 37, 2024-2036(1989).

    [26] S. Stute, C. Comtat. Practical considerations for image-based PSF and blobs reconstruction in PET. Phys. Med. Biol., 58, 3849(2013).

    [27] A. K. Trull et al. Point spread function based image reconstruction in optical projection tomography. Phys. Med. Biol., 62, 7784(2017).

    [28] B. Zhu et al. Image reconstruction by domain-transform manifold learning. Nature, 555, 487-492(2018).

    [29] L. Song et al. High-accuracy image formation model for coded aperture snapshot spectral imaging. IEEE Trans. Comput. Imaging, 8, 188-200(2022).

    [30] K. C. Lee et al. Design and single-shot fabrication of lensless cameras with arbitrary point spread functions. Optica, 10, 72(2023).

    [31] H. J. Zhu, B. C. Han, B. Qiu. Survey of astronomical image processing methods. Lect. Notes Comput. Sci., 9219, 420-429(2015).

    [32] J. Smith et al. Image-to-image translation for wavefront and PSF estimation. Proc. SPIE, 12185, 121852L(2022).

    [33] S. Ludwig et al. Image reconstruction and enhancement by deconvolution in scatter-plate microscopy. Opt. Express, 27, 23049-23058(2019).

    [34] X. Shao et al. Applications of both time of flight and point spread function in brain PET image reconstruction. Nucl. Med. Commun., 37, 422-427(2016).

    [35] D. Kidera et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann. Nucl. Med., 30, 97-103(2016).

    [36] X. Xie et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation. Sci. Rep., 8, 4585(2018).

    [37] C. Pei et al. Dynamic non-line-of-sight imaging system based on the optimization of point spread functions. Opt. Express, 29, 32349-32364(2021).

    [38] L. B. Wolff, S. K. Nayar, M. Oren. Improved diffuse reflection models for computer vision. Int. J. Comput. Vis., 30, 55-71(1998).

    [39] C. Tian et al. Coarse-to-fine CNN for image super-resolution. IEEE Trans. Multimedia, 23, 1489-1502(2020).

    [40] J. Yamanaka, S. Kuwashima, T. Kurita. Fast and accurate image super resolution by deep CNN with skip connection and network in network. Lect. Notes Comput. Sci., 10635, 217-225(2017).

    [41] Z. Wang et al. Multi-memory convolutional neural network for video super-resolution. IEEE Trans. Image Process., 28, 2530-2544(2018).

    [42] R. Kuschmierz et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light Adv. Manuf., 2, 415-424(2021).

    [43] H. Zhu et al. DNF: diffractive neural field for lensless microscopic imaging. Opt. Express, 30, 18168-18178(2022).

    [44] Q. Li et al. Imaging reconstruction through strongly scattering media by using convolutional neural networks. Opt. Commun., 477, 126341(2020).

    [45] Y. Sun et al. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express, 27, 16032-16046(2019).

    [46] P. Netrapalli, P. Jain, S. Sanghavi. Phase retrieval using alternating minimization, 2796-2804(2013).

    [47] E. J. Candes, X. Li, M. Soltanolkotabi. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory, 61, 1985-2007(2015).

    Su Wu, Chan Huang, Jing Lin, Tao Wang, Shanshan Zheng, Haisheng Feng, Lei Yu. Physics-constrained deep-inverse point spread function model: toward non-line-of-sight imaging reconstruction[J]. Advanced Photonics Nexus, 2024, 3(2): 026010
    Download Citation