• Chinese Optics Letters
  • Vol. 20, Issue 2, 021603 (2022)
Wei Wang1, Qinpeng Chen1, Yifei Zhao2, Yakun Le1, Shengda Ye1, Mang Wan3, Xiongjian Huang1、4、*, and Guoping Dong1、**
Author Affiliations
  • 1State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
  • 2Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
  • 3Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
  • 4School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.3788/COL202220.021603 Cite this Article Set citation alerts
    Wei Wang, Qinpeng Chen, Yifei Zhao, Yakun Le, Shengda Ye, Mang Wan, Xiongjian Huang, Guoping Dong. PbS quantum dots and BaF2:Tm3+ nanocrystals co-doped glass for ultra-broadband near-infrared emission [Invited][J]. Chinese Optics Letters, 2022, 20(2): 021603 Copy Citation Text show less
    References

    [1] Y. Wang, N. K. Thipparapu, D. J. Richardson, J. K. Sahu. Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands. J. Lightwave Technol., 39, 795(2021).

    [2] A. W. Naji, B. A. Hamida, X. S. Cheng, M. A. Mahdi, S. Harun, S. Khan, W. F. Al-Khateeb, A. A. Zaidan, B. B. Zaidan, H. Ahmad. Review of erbium-doped fiber amplifier. Int. J. Phys. Sci., 6, 4674(2011).

    [3] N. K. Thipparapu, Y. Wang, S. Wang, A. A. Umnikov, P. Barua, J. K. Sahu. Bi-doped fiber amplifiers and lasers. Opt. Mater. Express, 9, 2446(2019).

    [4] Z. Hu, Z. Liu, Z. Zhan, T. Shi, J. Du, X. Tang, Y. Leng. Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission. Adv. Photonics, 3, 034002(2021).

    [5] S. Zhang, D. Li, G. Zhao. Tunable all-fiber Er3+-doped laser based on a double-clad Er3+/Yb3+ co-doped fiber amplifier. Microw. Opt. Technol. Lett., 50, 2671(2008).

    [6] L. Guo, S. Zhao, T. Li, W. Qiao, B. Ma, Y. Yang, K. Yang, H. Nie, B. Zhang, R. Wang, J. He, Y. Wang. In-band pumped, high-efficiency LGS electro-optically Q-switched 2118 nm Ho:YAP laser with low driving voltage. Opt. Laser Technol., 126, 106015(2020).

    [7] Y. Zhao, D. Zhao, R. Liu, W. Ma, T. Wang. Switchable generation of a sub-200 fs dissipative soliton and a noise-like pulse in a normal-dispersion Tm-doped mode-locked fiber laser. Appl. Opt., 59, 3575(2020).

    [8] Y. Xie, Z. Liu, Z. Cong, Z. Qin, S. Wang, Z. Jia, C. Li, G. Qin, X. Gao, X. Zhang. All-fiber-integrated Yb:YAG-derived silica fiber laser generating 6 W output power. Opt. Express, 27, 3791(2019).

    [9] Y. Wang, J. Wu, Q. Zhao, W. Wang, J. Zhang, Z. Yang, S. Xu, M. Peng. Single-frequency DBR Nd-doped fiber laser at 1120 nm with a narrow linewidth and low threshold. Opt. Lett., 45, 2263(2020).

    [10] C. Jiang. Modeling and gain properties of Er3+ and Pr3+ codoped fiber amplifier for 1.3 and 1.5 µm windows. J. Opt. Soc. Am. B, 26, 1049(2009).

    [11] X. Shen, Y. Zhang, L. Xia, J. Li, G. Yang, Y. Zhou. Dual super-broadband NIR emissions in Pr3+-Er3+-Nd3+ tri-doped tellurite glass. Ceram. Int., 46, 14284(2020).

    [12] J. Liu, X. Huang, H. Pan, X. Zhang, X. Fang, W. Li, H. Zhang, A. Huang, Z. Xiao. Broadband near infrared emission of Er3+/Yb3+ co-doped fluorotellurite glass. J. Alloys Compd., 866, 158568(2021).

    [13] M. Zhang, W. Zheng, Y. Liu, P. Huang, Z. Gong, J. Wei, Y. Gao, S. Zhou, X. Li, X. Chen. A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem. Int. Ed., 58, 9556(2019).

    [14] S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, D. Jin. Advances in highly doped upconversion nanoparticles. Nat. Commun., 9, 2415(2018).

    [15] L. Cormier, S. Zhou. Transition metals as optically active dopants in glass-ceramics. Appl. Phys. Lett., 116, 260503(2020).

    [16] J. Ren, X. Lu, C. Lin, R. K. Jain. Luminescent ion-doped transparent glass ceramics for mid-infrared light sources. Opt. Express, 28, 21522(2020).

    [17] C. Lin, L. Li, S. Dai, C. Liu, Z. Zhao, C. Bocker, C. Rüssel. Oxyfluoride glass-ceramics for transition metal ion based photonics: broadband near-IR luminescence of nickel ion dopant and nanocrystallization mechanism. J. Phys. Chem. C, 120, 4556(2016).

    [18] J. Xue, X. Wang, J. H. Jeong, X. Yan. Fabrication, photoluminescence and applications of quantum dots embedded glass ceramics. Chem. Eng. J., 383, 123082(2020).

    [19] F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, E. H. Sargent. Semiconductor quantum dots: technological progress and future challenges. Science, 373, 6555(2021).

    [20] X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu, Z. Xia, F. Fan, J. Qiu, G. Dong. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon., 14, 82(2020).

    [21] Z. Cao, F. Hu, C. Zhang, S. Zhu, M. Xiao, X. Wang. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Adv. Photonics, 2, 054001(2020).

    [22] G. Dong, H. Wang, G. Chen, Q. Pan, J. Qiu. Quantum dot-doped glasses and fibers: fabrication and optical properties. Front. Mater., 2, 13(2015).

    [23] X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, J. Qiu. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission. J. Mater. Chem. C, 5, 7927(2017).

    [24] R. Martin-Rodriguez, R. Geitenbeek, A. Meijerink. Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J. Am. Chem. Soc., 135, 13668(2013).

    [25] E. O. Serqueira, N. O. Dantas. Determination of the energy transfer section between CdS semiconductor quantum dots and Nd ions. Opt. Mater., 90, 252(2019).

    [26] Z. Peng, X. Huang, Z. Ma, G. Dong, J. Qiu. Surface modification and fabrication of white-light-emitting Tm3+/CdS quantum dots co-doped glass fibers. J. Am. Ceram. Soc., 102, 5818(2019).

    [27] G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758(1999).

    [28] G. Kresse, J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15(1996).

    [29] X. Huang, Z. Peng, Q. Guo, X. Song, J. Qiu, G. Dong. Energy transfer process and temperature-dependent photoluminescence of PbS quantum dot-doped glasses. J. Am. Ceram. Soc., 102, 3391(2019).

    [30] S. A. Wade, S. F. Collins, G. W. Baxter. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys., 94, 4743(2003).

    Data from CrossRef

    [1] Zamin Mamiyev, Narmina O. Balayeva. PbS nanostructures: A Review of recent advances. Materials Today Sustainability, 100305(2023).

    Wei Wang, Qinpeng Chen, Yifei Zhao, Yakun Le, Shengda Ye, Mang Wan, Xiongjian Huang, Guoping Dong. PbS quantum dots and BaF2:Tm3+ nanocrystals co-doped glass for ultra-broadband near-infrared emission [Invited][J]. Chinese Optics Letters, 2022, 20(2): 021603
    Download Citation