• Journal of Semiconductors
  • Vol. 41, Issue 12, 122402 (2020)
Jinyong Wu1, Donglin Huang1, Yujie Ye1, Jianyuan Wang1, Wei Huang1, Cheng Li1, Songyan Chen1, and Shaoying Ke2
Author Affiliations
  • 1Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China
  • 2College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
  • show less
    DOI: 10.1088/1674-4926/41/12/122402 Cite this Article
    Jinyong Wu, Donglin Huang, Yujie Ye, Jianyuan Wang, Wei Huang, Cheng Li, Songyan Chen, Shaoying Ke. Theoretical study of a group IV p–i–n photodetector with a flat and broad response for visible and infrared detection[J]. Journal of Semiconductors, 2020, 41(12): 122402 Copy Citation Text show less
    References

    [1] G Eda, G Fanchini, M Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 3, 270(2008).

    [2] S Park, G Wang, B Cho et al. Flexible molecular-scale electronic devices. Nat Nanotechnol, 7, 438(2012).

    [3] F P G de Arquer, A Armin, P Meredith et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2, 16100(2017).

    [4] X Gong, M Tong, Y Xia et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 325, 1665(2009).

    [5] H Qiao, J Yuan, Z Q Xu et al. Broadband photodetectors based on graphene–Bi2Te3 heterostructure. ACS Nano, 9, 1886(2015).

    [6] H Yuan, X Liu, F Afshinmanesh et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat Nanotechnol, 10, 707(2015).

    [7] W Hu, H Cong, W Huang et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light: Sci Appl, 8, 106(2019).

    [8] C Eckhardt, K Hummer, G Kresse. Indirect-to-direct gap transition in strained and unstrained SnxGe1–x alloys. Phys Rev B, 89, 165201(2014).

    [9] W Du, S A Ghetmiri, B R Conley et al. Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx. Appl Phys Lett, 105, 051104(2014).

    [10] A Gassenq, F Gencarelli, J van Campenhout et al. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt Express, 20, 27297(2012).

    [11] H Cong, C L Xue, J Zheng et al. Silicon based GeSn p–i–n photodetector for SWIR detection. IEEE Photonics J, 8, 1(2016).

    [12] S J Su, B W Cheng, C L Xue et al. GeSn p–i–n photodetector for all telecommunication bands detection. Optics Express, 19, 6400(2011).

    [13] J Mathews, R Roucka, J Xie et al. Extended performance GeSn/Si(100) p–i–n photodetectors for full spectral range telecommunication applications. Appl Phys Lett, 95, 133506(2009).

    [14] J Kouvetakis, J Menendez, A V G Chizmeshya. Tin-based group IV semiconductors: New platforms for opto- and microelectronics on silicon. Annu Rev Mater Res, 36, 497(2006).

    [15] S Y Ke, Y J Ye, S M Lin et al. Low-temperature oxide-free silicon and germanium wafer bonding based on a sputtered amorphous Ge. Appl Phys Lett, 112, 041601(2018).

    [16] S Y Ke, Y J Ye, J Y Wu et al. Interface characteristics and electrical transport of Ge/Si heterojunction fabricated by low-temperature wafer bonding. J Phys D, 51, 265306(2018).

    [17] S Y Ke, S M Lin, Y J Ye et al. Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer. J Phys D, 50, 405305(2017).

    [18] Y Lin, K H Lee, S Bao et al. High-efficiency normal-incidence vertical p–i–n photodetectors on a germanium-on-insulator platform: Publisher's note. Photonics Res, 6, 46(2018).

    [19] S A Ghetmiri, W Du, B R Conley et al. Shortwave-infrared photoluminescence from Ge1–xSnx thin films on silicon. J Vac Sci Technol B, 32, 060601(2014).

    [20] H Tran, W Du, S A Ghetmiri et al. Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J Appl Phys, 119, 103106(2016).

    [21] C Masini, L Calace, G Assanto et al. High-performance p–i–n Ge on Si photodetectors for the near infrared: From model to demonstration. IEEE Trans Electron Devices, 48, 1092(2001).

    [22] M Rzaev, F Schäffler, V Vdovin et al. Misfit dislocation nucleation and multiplication in fully strained SiGe/Si heterostructures under thermal annealing. Mater Sci Semicond Process, 8, 137(2005).

    [23] J Humlíček, M Garriga, M I Alonso et al. Optical spectra of SixGe1–x alloys. J Appl Phys, 65, 2827(1989).

    [24] R Braunstein, A R Moore, F Herman. Intrinsic optical absorption in germanium-silicon alloys. Phys Rev, 109, 695(1958).

    [25] D Choi, Y S Ge, J S Harris et al. Low surface roughness and threading dislocation density Ge growth on Si (001). J Cryst Growth, 310, 4273(2008).

    [26] G Xia, J L Hoyt, M Canonico. Si –Ge interdiffusion in strained Si/strained SiGe heterostructures and implications for enhanced mobility metal–oxide–semiconductor field-effect transistors. J Appl Phys, 101, 044901(2007).

    [27] M Gavelle, E M Bazizi, E Scheid et al. Study of silicon-germanium interdiffusion from pure germanium deposited layers. Mater Sci Eng B, 154/155, 110(2008).

    [28] H Luan, D R Lim, K K Lee et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl Phys Lett, 75, 2909(1999).

    [29] J del Alamo, S Swirhun, R M Swanson. Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon. Int Electron Devices Meet, 290(1985).

    [30] S S Kulin, A D Kurtz. Effect of dislocations on minority carrier lifetime in germanium. Acta Metall, 2, 354(1954).

    [31] Y Zhao, N Wang, K Yu et al. High performance silicon-based GeSn p–i–n photodetectors for short-wave infrared application. Chin Phys B, 28, 128501(2019).

    [32]

    [33] C Chang, Y D Sharma, Y Kim et al. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett, 10, 1704(2010).

    [34] J K Yang, M K Seo, I K Hwang et al. Polarization-selective resonant photonic crystal photodetector. Appl Phys Lett, 93, 211103(2008).

    [35] T F Zhu, Z C Liu, Z C Liu et al. Fabrication of monolithic diamond photodetector with microlenses. Opt Express, 25, 31586(2017).

    [36] H Zhong, A R Guo, G H Guo et al. The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching. Nanoscale Res Lett, 11, 1(2016).

    Jinyong Wu, Donglin Huang, Yujie Ye, Jianyuan Wang, Wei Huang, Cheng Li, Songyan Chen, Shaoying Ke. Theoretical study of a group IV p–i–n photodetector with a flat and broad response for visible and infrared detection[J]. Journal of Semiconductors, 2020, 41(12): 122402
    Download Citation