• Photonics Research
  • Vol. 9, Issue 3, 370 (2021)
Weijun Wang1、2、3、†, Liang-Hui Du2、4、†, Jiang Li2、4, Pei-Ren Tang2, Changlin Sun2, Songlin Chen3, Jun Wang5, Zhao-Hui Zhai2、4, Zhipeng Gao2, Ze-Ren Li2、4, Jianquan Yao6, Furi Ling1、3、7, and Li-Guo Zhu2、4、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
  • 3School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4Microsystem & Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
  • 5School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 6College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 7e-mail: lingfuri@hust.edu.cn
  • show less
    DOI: 10.1364/PRJ.403926 Cite this Article Set citation alerts
    Weijun Wang, Liang-Hui Du, Jiang Li, Pei-Ren Tang, Changlin Sun, Songlin Chen, Jun Wang, Zhao-Hui Zhai, Zhipeng Gao, Ze-Ren Li, Jianquan Yao, Furi Ling, Li-Guo Zhu. Terahertz wave avalanche breakdown transistor for high-performance switching[J]. Photonics Research, 2021, 9(3): 370 Copy Citation Text show less
    References

    [1] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [2] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [3] Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, L. G. Zhu. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy. Biomed. Opt. Express, 9, 14-24(2018).

    [4] K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, F. Li, S. C. Zhong, Z. R. Li, H. Feng, J. H. Zhao. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma. J. Biomed. Opt., 19, 077001(2014).

    [5] Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwellmacpherson, J. Xu. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun., 9, 1(2018).

    [6] S. Lee, M. Choi, T. Kim, S. Lee, M. Liu, X. Yin, H.-K. Choi, S. S. Lee, C. Choi, S. Choi, X. Zhang, B. Min. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936-941(2012).

    [7] S. Chen, H. Yuan, Z. H. Zhai, L. H. Du, S. C. Zhong, H. F. Zhu, Q. W. Shi, W. X. Huang, Z. R. Li, L. G. Zhu. All optically driven memory device for terahertz waves. Opt. Lett., 45, 236-239(2020).

    [8] X. Liu, Z. Chen, E. P. J. Parrott, B. S. Y. Ung, J. Xu, E. Pickwellmacpherson. Graphene based terahertz light modulator in total internal reflection geometry. Adv. Opt. Mater., 5, 1600697(2017).

    [9] H. Zhu, J. Li, L. Du, W. Huang, J. Liu, J. Zhou, Y. Chen, S. Das, Q. Shi, L. Zhu, C. Liu. A phase transition oxide/graphene interface for incident-angle-agile, ultrabroadband, and deep THz modulation. Adv. Mater. Interfaces, 7, 2001297(2020).

    [10] Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, W. Zhang. Active graphene–silicon hybrid diode for terahertz waves. Nat. Commun., 6, 7082(2015).

    [11] P. R. Tang, J. Li, S. C. Zhong, Z. H. Zhai, B. Zhu, L. H. Du, Z. R. Li, L. G. Zhu. Giant dual-mode graphene-based terahertz modulator enabled by Fabry–Perot assisted multiple reflection. Opt. Lett., 45, 1630-1633(2020).

    [12] Z. Shi, X. Cao, Q. Wen, T. Wen, Q. Yang, Z. Chen, W. Shi, H. Zhang. Terahertz modulators based on silicon nanotip array. Adv. Opt. Mater., 6, 1700620(2018).

    [13] T. Wen, D. Zhang, Q. Wen, Y. Liao, C. Zhang, J. Li, W. Tian, Y. Li, H. Zhang, Y. Li, Q. Yang, Z. Zhong. Enhanced optical modulation depth of terahertz waves by self-assembled monolayer of plasmonic gold nanoparticles. Adv. Opt. Mater., 4, 174-180(2016).

    [14] W. Lai, C. Ge, H. Yuan, Q. Dong, D. Yang, Y. Fang. NIR light driven terahertz wave modulator with a large modulation depth based on a silicon-PEDOT:PSS-perovskite hybrid system. Adv. Mater. Technol., 5, 1901090(2020).

    [15] P. Weis, J. L. Garciapomar, M. Hoh, B. Reinhard, A. Brodyanski, M. Rahm. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano, 6, 9118-9124(2012).

    [16] B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, Y. Hou. Active terahertz device based on optically controlled organometal halide perovskite. Appl. Phys. Lett., 107, 093301(2015).

    [17] H. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [18] H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor. A metamaterial solid-state terahertz phase modulator. Nat. Photonics, 3, 148-151(2009).

    [19] L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, W. Zhang. A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime. Small, 12, 2610-2615(2016).

    [20] H. Zhu, L. Du, J. Li, Q. Shi, B. Peng, Z. Li, W. Huang, L. Zhu. Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films. Appl. Phys. Lett., 112, 081103(2018).

    [21] B. Sensale-Rodriguez, R. Yan, M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun., 3, 780(2012).

    [22] Q. Shi, K. Tian, H. Zhu, Z. Li, H. Deng, W. Huang, Q. Fu. Flexible and giant terahertz modulation based on ultrastrain sensitive conductive polymer composites. ACS Appl. Mater. Inter., 12, 9790-9796(2020).

    [23] H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, E. Pickwellmacpherson. “Evaluating liquid crystal properties for use in terahertz devices. Opt. Express, 20, 11899-11905(2012).

    [24] W. Kaiser, G. H. Wheatley. Hot electrons and carrier multiplication in silicon at low temperature. Phys. Rev. Lett., 3, 334-336(1959).

    [25] E. J. Ryder. Mobility of holes and electrons in high electric fields. Phys. Rev., 90, 766-769(1953).

    [26] S. H. Koenig. Recombination of thermal electrons in n-type germanium below 10°K. Phys. Rev., 110, 988-990(1958).

    [27] K. G. McKay. Avalanche breakdown in silicon. Phys. Rev., 94, 877-884(1954).

    [28] C. Tan, P. Hsieh, L. Chen, M. H. Huang. Silicon wafers with facet-dependent electrical conductivity properties. Angew. Chem. (Int. Ed.), 56, 15339-15343(2017).

    [29] Q. Mao, Q. Wen, W. Tian, T. Wen, Z. Chen, Q. Yang, H. Zhang. High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors. Opt. Lett., 39, 5649-5652(2014).

    [30] T. Jeon, D. Grischkowsky. Nature of conduction in doped silicon. Phys. Rev. Lett., 78, 1106-1109(1997).

    [31] L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, R. Singh. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl., 7, 28(2018).

    [32] D. Hashimshony, I. Geltner, G. Cohen, Y. Avitzour, A. Zigler, C. Smith. Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. J. Appl. Phys., 90, 5778-5781(2001).

    [33] S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma. High-performance terahertz wave absorbers made of silicon-based metamaterials. Appl. Phys. Lett., 107, 073903(2015).

    [34] C. La-o-vorakiat, T. Salim, J. Kadro, M.-T. Khuc, R. Haselsberger, L. Cheng, H. Xia, G. G. Gurzadyan, H. Su, Y. M. Lam, R. A. Marcus, M.-E. Michel-Beyerle, E. E. M. Chiac. Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat. Commun., 7, 11054(2016).

    [35] M. Dressel, G. Gruner. Metals. Electrodynamics of Solids, 100(2002).

    [36] T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, Y. Hou. High-efficiency THz modulator based on phthalocyanine-compound organic films. Appl. Phys. Lett., 106, 053303(2015).

    [37] Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, S. Liu. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett., 15, 3501-3506(2015).

    Weijun Wang, Liang-Hui Du, Jiang Li, Pei-Ren Tang, Changlin Sun, Songlin Chen, Jun Wang, Zhao-Hui Zhai, Zhipeng Gao, Ze-Ren Li, Jianquan Yao, Furi Ling, Li-Guo Zhu. Terahertz wave avalanche breakdown transistor for high-performance switching[J]. Photonics Research, 2021, 9(3): 370
    Download Citation