• Acta Optica Sinica
  • Vol. 40, Issue 19, 1904001 (2020)
Xin Wang and Junlin Wang*
Author Affiliations
  • College of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
  • show less
    DOI: 10.3788/AOS202040.1904001 Cite this Article Set citation alerts
    Xin Wang, Junlin Wang. Terahertz Metamaterial Absorber Sensor Based on Three-Dimensional Split-Ring Resonator Array and Microfluidic Channel[J]. Acta Optica Sinica, 2020, 40(19): 1904001 Copy Citation Text show less
    References

    [1] Fan X D, White I M, Shopova S I et al. Sensitive optical biosensors for unlabeled targets: a review[J]. Analytica Chimica Acta, 620, 8-26(2008).

    [2] Lin V S, Motesharei K, Dancil K P et al. A porous silicon-based optical interferometric biosensor[J]. Science, 278, 840-843(1997).

    [3] Yamana K, Ohtani Y, Nakano H et al. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor[J]. Bioorganic & Medicinal Chemistry Letters, 13, 3429-3431(2003).

    [4] Liu B Q, Zhang B, Chen G N et al. Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol[J]. Microchimica Acta, 181, 257-262(2014).

    [5] Mao Q J, Feng C Z. Absorptance properties of nested-ring metamaterial absorbers based on magnetic polaritons[J]. Acta Optica Sinica, 39, 0816001(2019).

    [6] Huang W Y. Electromagnetic metamaterial unit loss and optimal design of terahertz absorber[D]. Chengdu: Southwest Jiaotong University(2013).

    [7] Wang Y, Leng Y B, Dong L H et al. Design of tunable metamaterial absorber based on graphene-metal hybrid structure[J]. Acta Optica Sinica, 38, 0716001(2018).

    [8] Wang J, Wang S, Singh R et al. Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation[J]. Chinese Optics Letters, 11, 011602(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ130115000013JgMiPl

    [9] Chen T, Li S Y, Sun H. Metamaterials application in sensing[J]. Sensors, 12, 2742-2765(2012).

    [10] Pan W, Yan Y J, Shen D J. Performance analysis of terahertz metamaterial sensor based on electromagnetically induced transparency[J]. Infrared Technology, 40, 707-711(2018).

    [11] Tao H, Strikwerda A C, Liu M K et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 97, 261909(2010).

    [12] Zhang Y P, Li T T, Lü H H et al. Study on sensing characteristics of I-shaped terahertz metamaterial absorber[J]. Acta Physica Sinica, 64, 117801(2015).

    [13] Saadeldin A S. Hameed M F O, Elkaramany E M A, et al. Highly sensitive terahertz metamaterial sensor[J]. IEEE Sensors Journal, 19, 7993-7999(2019).

    [14] Janneh M, de Marcellis A, Palange E et al. Design of a metasurface-based dual-band terahertz perfect absorber with very high Q-factors for sensing applications[J]. Optics Communications, 416, 152-159(2018).

    [15] Li S Y, Ai X C, Wu R H et al. Design and simulation verification an environmental change metamaterial sensor[J]. Optics Communications, 428, 251-257(2018).

    [16] Sabah C, Dincer F, Karaaslan M et al. Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application[J]. Optics Communications, 322, 137-142(2014).

    [17] Wang W, Yan F P, Tan S Y et al. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators[J]. Photonics Research, 5, 571-577(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171207000109nTqWsZ

    [18] Singh R, Cao W, Al-Naib I. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 10, 171101(2014).

    [19] Yan X, Yang M S, Zhang Z et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 126, 485-492(2019).

    [20] Chen J, Nie H, Peng C et al. Enhancing the magnetic plasmon resonance of three-dimensional optical metamaterials via strong coupling for high-sensitivity sensing[J]. Journal of Lightwave Technology, 36, 3481-3485(2018).

    [21] Wu P C, Hsu W L, Chen W T et al[J]. Plasmon coupling in vertical split-ring resonator metamolecules Scientific Reports, 5, 9726.

    [22] Wang W, Yan F P, Tan S Y et al. Symmetry breaking and resonances hybridization in vertical split ring resonator metamaterials and the excellent sensing potential[J]. Journal of Lightwave Technology, 37, 5149-5157(2019).

    [23] Withayachumnankul W, Jaruwongrungsee K, Tuantranont A et al. Metamaterial-based microfluidic sensor for dielectric characterization[J]. Sensors and Actuators A: Physical, 189, 233-237(2013).

    [24] Hu X, Xu G Q, Wen L et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser & Photonics Reviews, 10, 962-969(2016).

    [25] Wiwatcharagoses N, Park K Y, Hejase J A et al. Microwave artificially structured periodic media microfluidic sensor[C]∥2011 IEEE 61st Electronic Components and Technology Conference (ECTC), May 31-June 3, 2011, Lake Buena Vista, FL, USA., 1889-1893(2011).

    [26] Kong Y, Cao J J, Qian W C et al. Multiple Fano resonance based optical refractive index sensor composed of micro-cavity and micro-structure[J]. IEEE Photonics Journal, 10, 6804410(2018).

    Xin Wang, Junlin Wang. Terahertz Metamaterial Absorber Sensor Based on Three-Dimensional Split-Ring Resonator Array and Microfluidic Channel[J]. Acta Optica Sinica, 2020, 40(19): 1904001
    Download Citation