• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 4, 489 (2014)
Jia-fa CAI* and Zheng-yun WU
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.04.014 Cite this Article
    CAI Jia-fa, WU Zheng-yun. Research progress in 4H-SiC-based ultraviolet photodetectors[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 489 Copy Citation Text show less
    References

    [1] Sang L, Liao M, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures [J]. Sensors, 2013, 13: 10482-10518.

    [2] Omnes F, Monroy E, et al. Wide bandgap UV photodetectors: A short review of devices and applications [J]. Proc. of SPIE, 2007, 6473E.

    [3] Electro Optical Componenets, Inc., SiC vs Si GaP aging performance 0208.pdf [OL]. www.eoc-inc.com/genicom/SiC vs Si GaP aging performance 0208.pdf.

    [4] Zeng S W, Zhang B P, Sun J W, et al. Substantial photo-response of InGaN p-i-n homojunction solar cells [J]. Semiconductor Science and Technology, 2009, 24(5): 055009.

    [5] Bao X, Xu J, Li C, et al. Temperature and frequency dependence of negative differential capacitance in a planar GaN-based p-i-n photodetector [J]. Journal of Alloys and Compounds, 2013, 581: 289-292.

    [6] Campbell J C, Collins C J, et al. High quantum efficiency at low bias AlxGa1-xN p-i-n photodiodes [J]. Phys. Stat. Sol. (a), 2001, 188(1): 283-287.

    [7] Looi H J, Whitfield M D, Jackman R B. Metal-semiconductor-metal photodiodes fabricated from thin-film diamond [J]. Appl. Phys. Lett., 1999, 74(22): 3332-3334.

    [8] Huang H, Xie Y, Yang W, et al. Low-dark-current TiO2 MSM UV photodetectors with Pt Schottky contacts [J]. IEEE Electron Device Letters, 2011, 32(4): 530-532.

    [9] Wei R, Song S, Yang K, et al. Thermal conductivity of 4H-SiC single crystals [J]. J. Appl. Phys., 2013, 113: 053503.

    [10] Hu J. H-SiC Detectors for Low Level Ultraviolet Detection [D]. The State University of New Jersey, 2008.

    [11] Bertuccio G, Casiraghi R. Study of silicon carbide for X-ray detection and spectroscopy [J]. IEEE Transactions on Nuclear Science, 2003, 50(1): 2003.

    [12] Atchtziger N, Grillenberger J, et al. Hydrogen passivation of silicon carbide by low-energy ion implantation [J]. Appl. Phys. Lett., 1998, 73: 945-947.

    [13] Ou H, Ou Y, Argyraki A, et al. Advances in wide bandgap SiC for optoelectronics [J]. Eur. Phys. J. B, 2014, 87: 58.

    [14] Müller S G, Glass R C, Hobgood H M, et al. Progress in the industrial production of SiC substrates for semiconductor devices [J]. Materials Science and Engineering, 2001, B80: 327-331.

    [15] Laube M, Pensl G, Itoh H. Suppressed diffusion of implanted boron in 4H-SiC [J]. Appl. Phys. Lett., 1999, 74(16): 2292-2295.

    [16] Shur M, Rumyantsev S, Levinshtein M. SiC Materials and Devices [M]. World Scientific Publishing Co. Pte. Ltd., 2006: 2-10.

    [17] Su Y K, Chiou Y Z, Chang C S, et al. 4H-SiC metal-semiconductor-metal ultraviolet photodetectors with Ni/ITO electrodes [J]. Solid-State Electronics, 2002, 46: 2237-2240.

    [18] Chiou Y Z. DC and noise characteristics of 4H-SiC metal-semiconductor-metal ultraviolet photodetectors [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes and Review Papers, 2004, 43(5A): 2432-2434.

    [19] Sciuto A, Roccaforte F, Franco S D, et al. High responsivity 4H-SiC Schottky UV photodiodes based on the pinch-off surface effect [J]. Applied Physics Letters, 2006, 89: 081111.

    [20] Mazzillo M, Condorelli G, Catagna M E, et al. High efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection [J]. IEEE Photonics Technology Letters, 2009, 21(23): 1782-1784.

    [21] Lien W C, Tsai D S, Lien D H, et al. 4H-SiC metal-semiconductor-metal ultraviolet photodetectors in operation of 450°C [J]. IEEE Electron Device Letters, 2012, 33(11): 1586-1588.

    [22] Wu Z, Xin X, et al. Demonstration of the first 4H-SiC metal-semiconductor-metal ultraviolet photodetector [C]. Silicon Carbide and Related Materials, 2004, 1491-1494.

    [23] Wu Z, Xin X, et al. Demonstration of the first 4H-SiC metal-semiconductor-metal ultraviolet photodetector [J]. Silicon Carbide and Related Materials, 2003, pts 1 and 2; Material Science Forum, 2004, 457-460: 1491-1494, Part1 and 2.

    [26] Yan F, Xin X, Aslam S, et al. 4H-SiC UV photo detectors with large area and very high specific detectivity [J]. IEEE Journal of Quantum Electronics, 2004, 40(9): 1315-1320.

    [27] Xin X, Yan F, Koeth T W, et al. Demonstration of 4H-SiC visible-blind EUV and UV detector with large detection area [J]. Electronics Letters, 2005, 41: 21.

    [28] Hu J, Xin X, Zhao J H, et al. Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area [J]. Optics Letters, 2006, 31(11): 1591-1593.

    [29] Blank T V, Goldberg Y A, Kalinina E V, et al. Temperature dependence of the photoelectric conversion quantum efficiency of 4H-SiC Schottky UV photodetectors [J]. Semiconductor Science and Technology, 2005, 20: 710-715.

    [30] Sciuto A, Mazzillo M, Raineri V, et al. On the aging effects of 4H-SiC Schottky photodiodes under high intensity mercury lamp irradiation [J]. IEEE Phonics Technology Letters, 2010, 22(11): 775-777.

    [31] Prasai D, John W, Weixelbaum L, et al. Highly reliable silicon carbide photodiodes for visible-blind ultraviolet detector applications [J]. J. Mater. Res., 2013, 28(1): 33-38.

    [35] Pierret R F. Semiconductor Device Fundamentals [M]. Addison-Wesley, 1996.

    [36] Glasow P, Ziegler G, Suttrop W, et al. SiC-UV-photodetectors [J]. SPIE Optoelectronic Technologies for Remote Sensing from Space, 1987, 868: 40-45.

    [37] Caputo D, Cesare G, Irrera F, et al. Solar-blind UV photodetectors for large area application [J]. IEEE Transactions on Electron Devices, 1996, 43(9): 1351-1356.

    [38] Brown D M, Fedison J B, Hibshman J R, et al. Silicon carbide photodiode sensor for combustion control [J]. IEEE Sensors Journal, 2005, 5(5): 983-988.

    [39] Liu X F, Sun G S, Li J M, et al. Visible blind p+-π-n-n+ ultraviolet photodetectors based on 4H-SiC homoepilayers [J]. Microelectronics Journal, 2006, 37: 1396-1398.

    [40] Chen X P, Yang W F, Wu Z Y. Visible blind p-i-n ultraviolet photodetector fabricated on 4H-SiC [J]. Microelectronic Engineering, 2006, 83: 104-106.

    [41] Chen X P, Zhu H L, Cai J F, et al. High-performance 4H-SiC-based ultraviolet p-i-n photodetector [J]. J. Appl. Phys., 2007, 102: 024505.

    [42] Biondo S, Lazar M, Ottaviani L, et al. 4H-silicon carbide thin junction based ultraviolet photodetectors [J]. Thin Solid Films, 2012, 522: 17-19.

    [43] Watanabe N, Kimoto T, Suda J. 4H-SiC pn photodiodes with temperature-independent photoresponse up to 300°C [J]. Appl. Phys. Expr., 2012, 5: 094101.

    [44] Konstantinov A O, Wahab Q, Nordell N, et al. Ionization rates and critical fields in 4H silicon carbide [J]. Appl. Phys. Lett., 1997, 71(1): 90-92.

    [45] Yan F, Luo Y, Zhao J H, et al. 4H-SiC visible blind UV avalanche photodiodes [J]. Electronics Letters, 1999, 35(11): 929-930.

    [46] Yan F, Zhao J H, Olsen G H. Demonstration of the first 4H-SiC avalanche photodiodes [J]. Solid-State Electronics, 2000, 44: 341-346.

    [47] Ng B K, Yan F, David J P R, et al. Multiplication and excess noise characteristics of thin 4H-SiC UV avalanche photodiodes [J]. IEEE Photonics Technology Letters, 2002, 14(9): 1342-1344.

    [48] Yan F, Qin C, Zhao J H. Low noise-visible-blind UV avalanche photodiodes with edge terminated by 2 degrees positive bevel [J]. Electronics Letters, 2002, 38(7): 335-336.

    [49] Yan F, Qin C, Zhao J H, et al. Demonstration of 4H-SiC avalanche photodiodes linear array [J]. Solid-State Electronics, 2003, 47: 241-245.

    [50] Xin X, Yan F, Sun X, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode [J]. Electron. Lett., 2005, 41(4): 212-214.

    [51] Hu J, Xin X, Li X, et al. 4H-SiC visible-blind single-photon avalanche diode for ultraviolet detection at 280 and 350 nm [J]. IEEE Transactions on Electron Devices, 2008, 55(8): 1977-1983.

    [52] Guo X, Beck A, Yang B, et al. Low dark current 4H-SiC avalanche photodiodes [J]. Electronics Letters, 2003, 39: 1673-1674.

    [53] Beck A L, Yang B, Guo X, et al. Edge breakdown in 4H-SiC avalanche photodiodes [J]. IEEE Journal of Quantum Electronics, 2004, 40(3): 321-324.

    [54] Guo X, Beck A, Li X, et al. Study of reverse dark current in 4H-SiC avalanche photodiodes [J]. IEEE Journal of Quantum Electronics, 2005, 41(4): 562-567.

    [55] Guo X, Beck A L, Huang Z, et al. Performance of low-dark-current 4H-SiC avalanche photodiodes with thin multiplication layer [J]. IEEE Transaction on Electron Devices, 2006, 53(9): 2259-2265.

    [56] Guo X, Rowland L B, Dunne G T, et al. Demonstration of ultraviolet separate absorption and multiplication 4H-SiC avalanche photodiodes [J]. IEEE Photonics Technology Letters, 2006, 18(1): 136-138.

    [57] Bai X, Guo X, Mcintosh D C, et al. High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes [J]. IEEE Journal of Quantum Electronics, 2007, 43(12): 1159-1162.

    [58] Liu H, Zheng X, Zhou Q, et al. Double mesa side wall silicon carbide avalanche photodiode [J]. IEEE Journal of Quantum Electronics, 2009, 45(12): 1524-1528.

    [59] Bai X, Liu H, McIntosh D C, et al. High-detectivity and high-single-photon- detection efficiency 4H-SiC avalanche photodiodes [J]. IEEE Journal of Quantum Electronics, 2009, 45(3): 300-303.

    [60] Zhou Q, Liu H, McIntosh D C, et al. Proton-implantation-isolated 4H-SiC avalanche photodiodes [J]. IEEE Photonics Technology Letters, 2009, 21(23): 1734-1736.

    [61] Zhou Q, McIntosh D, Liu H C, et al. Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes [J]. IEEE Photonics Technology Letters, 2011, 23(5): 299-301.

    [62] Li K, Liu H, Zhou Q, et al. SiC avalanche photodiode array with microlenses [J]. Optics Express, 2010, 18(11): 11713-11719.

    [63] Vert A, Soloviev S, Fronheiser J, et al. Solar-blind 4H-SiC single-photon avalanche diode operating in Geiger mode [J]. IEEE Photonics Technology Letters, 2008, 20(18): 1587-1589.

    [64] Vert A, Soloviev S, Sandvik P. SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection [J]. Phys. Solidi A, 2009, 206: 2468-2477.

    [65] Vert A, Soloviev S, Bolotnikov A, et al. Silicon carbide photomultipliers and avalanche photodiode arrays for ultraviolet and solar-blind light detection [J]. IEEE Sensors Conference, 2009: 1892-1896.

    [66] Shaw G A, Siegel A M, Model J, et al. Deep UV photo- counting detectors and applications [J]. Proc. of SPIE, 2009, 7320: 73200J.

    [67] Zhu H, Chen X, Cai J, et al. 4H-SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain [J]. Solid-State Electronics, 2009, 53: 7-10.

    [68] Constant A, Camara N, Godignon P, et al. Effect of photons on 4H-SiC rapid thermal oxidation using nitrous oxide gas [J]. Journal of the Electrochemical Society, 2010, 157(6): G136-G141.

    [69] Daves W, Krauss A, Haublein V, et al. Enhancement of the stability of Ti and Ni ohmic contacts to 4H-SiC with a stable protective coating for harsh environment applications [J]. Journal of Electronic Materials, 2011, 40(9): 1990-1997.

    [70] Bertuccio G, Casiraghi R. Study of silicon carbide for X-ray detection and spectroscopy [J]. IEEE Transactions on Nuclear Science, 2003, 50(1): 175-184.

    [71] Nava F, Bertuccio G, Cavallini A, et al. Silicon carbide and its use as a radiation detector material [J]. Meas. Sci. Technol., 2008, 19: 102001.

    [72] Bertuccio G, Puglisi D, Macera D, et al. Silicon carbide detectors for in vivo dosimetry [J]. IEEE Transactions on Nuclear Science, 2014, 61(2): 961-967.

    [73] SCITEC Instruments, SiC UV photodiode selection guide.pdf [OL]. http://www.scitec.uk. com/uvphotodiodes/.

    CAI Jia-fa, WU Zheng-yun. Research progress in 4H-SiC-based ultraviolet photodetectors[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 489
    Download Citation