• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036008 (2023)
Yizhou Tan1、2 and Ying Gu1、2、*
Author Affiliations
  • 1Chinese PLA General Hospital, the First Medical Center, Department of Laser Medicine, Beijing, China
  • 2Hainan Hospital, Chinese PLA General Hospital, Laser Medicine Center, Sanya, China
  • show less
    DOI: 10.1117/1.APN.2.3.036008 Cite this Article Set citation alerts
    Yizhou Tan, Ying Gu. Characteristics of a Gaussian focus embedded within spiral patterns in common-path interferometry with phase apertures[J]. Advanced Photonics Nexus, 2023, 2(3): 036008 Copy Citation Text show less
    References

    [1] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [2] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [3] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [4] O. Emile et al. Dark zone in the centre of the Arago-Poisson diffraction spot of a helical laser beam. Europhys. Lett., 101, 54005(2013).

    [5] J. Qi et al. Continuously adjustable cylindrical vector and vortex beams by programming vortex half-wave plates and detection based on coaxial or small-angle interference. Phys. Rev. Appl., 18, 034086(2022).

    [6] C. Li et al. Analytical description of sub-diffraction dark spot. Opt. Commun., 499, 127295(2021).

    [7] X. Liu et al. Coaxial multi-ring optical vortex generation based on compound spiral phase plates. Laser Phys., 32, 035402(2022).

    [8] J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Opt. Commun., 207, 169-175(2002).

    [9] J. E. Curtis, D. G. Grier. Modulated optical vortices. Opt. Lett., 28, 872-874(2003).

    [10] M. Piccardo, A. Ambrosio. Arbitrary polarization conversion for pure vortex generation with a single metasurface. Nanophotonics, 10, 727-732(2020).

    [11] T. Li et al. Multidimensional light field manipulation and applications based on optical metasurface. Proc. SPIE, 11850, 1185004(2021).

    [12] D. J. Lee, A. M. Weiner. Optical phase imaging using a synthetic aperture phase retrieval technique. Opt. Express, 22, 9380-9394(2014).

    [13] W. Chi, N. George. Phase-coded aperture for optical imaging. Opt. Commun., 282, 2110-2117(2009).

    [14] J. M. Hickmann et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett., 105, 053904(2010).

    [15] L. E. de Araujo, M. E. Anderson. Measuring vortex charge with a triangular aperture. Opt. Lett., 36, 787-789(2011).

    [16] M. P. MacDonald et al. Revolving interference patterns for the rotation of optically trapped particles. Opt. Commun., 201, 21-28(2002).

    [17] M. Krenn et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [18] M. Krenn et al. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A., 113, 13648-13653(2016).

    [19] F. Kenny et al. Adaptive optimisation of a generalised phase contrast beam shaping system. Opt. Commun., 342, 109-114(2015).

    [20] J. Glückstad, P. C. Mogensen. Optimal phase contrast in common-path interferometry. Appl. Opt., 40, 268-282(2001).

    [21] A. Ustinov et al. Focal-plane field when lighting double-ring phase elements. Comput. Opt., 41, 515-520(2017).

    [22] A. Bañas, J. Glückstad. Light shaping with holography, GPC and holo-GPC. Opt. Data Process. Storage, 3, 20-40(2017).

    [23] D. Palima, J. Glückstad. Generalised phase contrast: microscopy, manipulation and more. Contemp. Phys., 51, 249-265(2010).

    [24] P. Fischer et al. The dark spots of Arago. Opt. Express, 15, 11860-11873(2007).

    [25] C. Jun, K. Deng-Feng, F. Zhi-Liang. Properties of Fraunhofer diffraction by an annular spiral phase plate for sidelobe suppression. Chin. Phys. Lett., 26, 094210(2009).

    [26] A. Ashkin, J. M. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769-771(1987).

    [27] A. Ashkin, J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517-1520(1987).

    [28] V. Shahabadi, E. Madadi. Effective multiple optical trapping of sub-micrometer particles with petal beams. J. Opt. Soc. Am. B, 37, 3665(2020).

    [29] S. P. Kotova et al. Manipulation of microscopic objects with two-lobe light fields. Bull. Lebedev Phys. Inst., 49, 362-365(2022).

    [30] F. Pedaci et al. Excitable particles in an optical torque wrench. Nat. Phys., 7, 259-264(2011).

    [31] A. La Porta, M. D. Wang. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett., 92, 190801(2004).

    [32] C. Deufel et al. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat. Methods, 4, 223-225(2007).

    [33] A. Ambuj et al. Symmetry in the diffraction of beams carrying orbital angular momentum. Phys. Rev. A, 99, 013846(2019).

    [34] H. Huang et al. Phase-shift interference-based wavefront characterization for orbital angular momentum modes. Opt. Lett., 38, 2348-2350(2013).

    [35] G. Gibson et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [36] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [37] G. Vicidomini, P. Bianchini, A. Diaspro. STED super-resolved microscopy. Nat. Methods, 15, 173-182(2018).

    [38] M. J. Villangca et al. Dark GPC: extended nodal beam areas from binary-only phase. Opt. Eng., 55, 125102(2016).

    [39] A. Ambuj, R. Vyas, S. Singh. Diffraction of orbital angular momentum carrying optical beams by a circular aperture. Opt. Lett., 39, 5475(2014).

    [40] R. Vasilyeu et al. Generating superpositions of higher-order Bessel beams. Opt. Express, 17, 23389-23395(2009).

    Yizhou Tan, Ying Gu. Characteristics of a Gaussian focus embedded within spiral patterns in common-path interferometry with phase apertures[J]. Advanced Photonics Nexus, 2023, 2(3): 036008
    Download Citation