• Photonic Sensors
  • Vol. 2, Issue 2, 158 (2012)
Qi LI1, Fengping YAN1、*, Peng LIU2, Wanjing PENG1, Guolu YIN1, and Ting FENG1
Author Affiliations
  • 1Key Lab of All Optical Network and Advanced Telecommunication, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing, 100044, China
  • 2Physics Department of Xingtai College, Xingtai, 054001, China
  • show less
    DOI: 10.1007/s13320-012-0049-4 Cite this Article
    Qi LI, Fengping YAN, Peng LIU, Wanjing PENG, Guolu YIN, Ting FENG. Analysis of Transmission Characteristics of Tilted Long Period Fiber Gratings With Full Vector Complex Coupled Mode Theory[J]. Photonic Sensors, 2012, 2(2): 158 Copy Citation Text show less
    References

    [1] V. Bhatia and A. M. Vengsarkkar, “Optical fiber long-period grating sensors,” Optics Letters, vol. 21, no. 9, pp. 692-694, 1996.

    [2] X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber grating,” Journal of Lightwave Technology, vol. 20, ,no. 2, pp. 255-266, 2002.

    [3] K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electronics Letters, vol. 26, no. 16, pp. 1270-1272, 1990.

    [4] G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Applied Optics, vol. 18, no. 9, pp. 1445-1448, 1979.

    [5] M. G. Xu, L. Peekie, Y. T. Chow, and J. P. Dakin, “Optical in-fiber grating high pressure sensor,” Electronics Letters, vol. 29, no. 4, pp. 398-399, 1993.

    [6] M. G. Xu, H. Geiger, and J. P. Dakin, “Fiber grating pressure sensor with enhance sensitivity using a glass-bubble housing,” Electronics Letters, vol. 32, no. 2, pp. 128-139, 1996.

    [7] T. Erdogan, “Fiber grating spectra,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277-1294, 1997.

    [8] T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” Journal of the Optical Society of America A, vol. 13, no. 2, pp. 296-313, 1996.

    [9] T. Erdogan, “Cladding-mode resonances in short and long period fiber grating filters,” Journal of the Optical Society of America A, vol. 14, no. 8, pp. 1760-1773, 1997.

    [10] Y. C. Lu, W. P. Huang, and S. S. Jian, “Polarization sensitivities of demodulation techniques for tilted fiber Bragg grating refractometer,” in Proc. SPIE (Asia Communications and Photonics Conference and Exhibition), vol. 7630, pp. 76300U , 2009.

    [11] Y. C. Lu, W. P. Huang, and S. S. Jian, “Full vector complex coupled mode theory for tilted fiber gratings,” Optics Express, vol. 18, no. 2, pp. 713-725, 2010.

    [12] Y. C. Lu, L. Yang, W. P. Huang, and S. S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” Journal of Lightwave Technology, vol. 26, no. 13, pp. 1868-1876, 2008.

    [13] Y. C. Lu, L. Yang, W. P. Huang, and S. S. Jian, “Unified approach for coupling to cladding and radiation modes in fiber Bragg and long-period gratings,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1461-1468, 2009.

    [14] R. Kashyap, R. Wyatt, and R. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electronics Letters, vol. 29, no. 2, pp. 154-156, 1993.

    [15] L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” Journal of Lightwave Technology, vol. 28, no. 18, pp. 2681-2687, 2010.

    [16] X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technology Letters, vol. 18, no. 24, pp. 2596-2598, 2006.

    [17] E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fiber Bragg grating,” Optics Communications, vol. 275, no. 2, pp. 344-347, 2007.

    [18] T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Optics Express, vol. 17, no. 7, pp. 5736-5742, 2009.

    [19] R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electronics Letters, vol. 29, no. 2, pp. 154-156, 1993.

    [20] Y. C. Lu, R. Geng, C. C. Wang, F. Zhang, C. Liu, T. G. Ning, and S. S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” Journal of Lightwave Technology, vol. 28, no. 11, pp. 1677-1684, 2009.

    [21] R. Wu, Y. Q. Liu, J. Zou, N. Chen, F. F. Pang, and T. Y. Wang, “Fabrication of tilted long-period fiber gratings by CO2 laser,” in Proc. SPIE, vol. 8307, pp. 83072D, 2011.

    [22] Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” Journal of Applied Physics, vol. 108, no.8, pp. 081101-1-081101-18, 2010.

    Qi LI, Fengping YAN, Peng LIU, Wanjing PENG, Guolu YIN, Ting FENG. Analysis of Transmission Characteristics of Tilted Long Period Fiber Gratings With Full Vector Complex Coupled Mode Theory[J]. Photonic Sensors, 2012, 2(2): 158
    Download Citation