• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 4, 403 (2018)
LIU Shao-Shuai1、*, JIANG Zhen-Hua1, ZHANG An-Kuo1, TANG Zhen-Gang2, DING Lei1, and WU Yi-Nong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.04.005 Cite this Article
    LIU Shao-Shuai, JIANG Zhen-Hua, ZHANG An-Kuo, TANG Zhen-Gang, DING Lei, WU Yi-Nong. Study on high energy efficiency 30 K sigle-stage pulse tube cryocooler for a space infrared detector[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 403 Copy Citation Text show less
    References

    [4] Raab J, Tward E. Northrop grumman aerospace systems cryocooler overview[J]. Cryogenics, 2010, 50(9): 572-581.

    [5] Duband L. Space cryocooler developments[J]. Physics Procedia, 2015, 67:1-10.

    [6] Gan Z H, Fan B Y, Wu Y Z, et al. A two-stage Stirling-type pulse tube cryocooler with a cold inertance tube[J]. Cryogenics, 2010, 50:426-431.

    [7] Kim Y, Park I, Jeong S. Experimental investigation of two-stage active magnetic regenerative refrigerator operating between 77 K and 20 K[J]. Cryogenics, 2013, 57:113-121.

    [8] Ren J, Dai W, Luo E. Experimental investigation on a single-stage Stirling-type pulse tube cryocooler working below 30 K[C]. Cryocoolers 16. Springer US, 2011:51-55.

    [9] Chen L, Zhu Q, Zhu W, et al. Research of Stirling-type multi-bypass pulse tube cryocoolers with temperatures below 20 K[J]. 2014, Advances in Cryogenic Engineering, 1573:982-987.

    [10] Wang G P, Cai J H, Li N, et al. Development of a 0.5 W40 K pulse tube cryocooler for an infrared detector[C]. Cryocoolers 14. Boulder. 2007: 83-88.

    [11] Yang L W, Xun Y Q, Thummes G, et al. Single-stage high frequency coaxial pulse tube cryocooler with base temperature below 30 K[J]. Cryogenics, 2010, 50:342-346.

    [12] Chen L, Zhou Q, Jin H, et al. 386 mW20 K single-stage Stirling-type pulse tube cryocooler[J]. 2013, Cryogenics, 57:195-199.

    [13] Burt W W, Chan C K. Demonstration of a high performance 35 K pulse tube cryocooler[C]. Cryocoolers 8. Springer US, 1995:313-319.

    [14] Liu S S, Chen X, Zhang A K, et al. Investigation of the inertance tube of a pulse tube refrigerator operating at high temperature[J]. Energy, 2017, 123:378-385.

    [15] Radebough R. Thermodynamics of regenerative refrigerators[J]. Generation of Low Temperature and It's Applications, 2003.

    [17] W. S. G. Thermoacoustic engines[J]. Journal of the Acoustic Society of America, 1988, 84:1145-1180.

    [18] Wakelang R S. Use of electrodynamic drivers in thermoacoustic refrigerators[J]. The Journal of the Acoustical Society of America, 2000, 107(2):827-832.

    [19] Gan Z H, Wang L Y, Zhao S Y, et al. Acoustic impedance characteristic of linear compressors[J]. Journal of Zhejiang University-SCIENCE A, 2013, 14:494-503.

    [20] Liu S S, Chen X, Zhang A K, et al. Investigation on phase shifter of a 10 W70 K inertance pulse tube refrigerator[J]. 2017, International Journal of Refrigeration, 74:448-455.

    [21] Ward B, Clark J, Swift G. Design environment for low-amplitude thermoacoustic energy conversion[R]. 2016.

    [23] Liu S S, Chen X, Zhang A K, et al. Impact of coiled type inertance tube on performance of pulse tube refrigerator[J]. Applied Thermal Engineering, 2016, 107:63-69.

    LIU Shao-Shuai, JIANG Zhen-Hua, ZHANG An-Kuo, TANG Zhen-Gang, DING Lei, WU Yi-Nong. Study on high energy efficiency 30 K sigle-stage pulse tube cryocooler for a space infrared detector[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 403
    Download Citation