• Acta Optica Sinica
  • Vol. 41, Issue 1, 0106004 (2021)
Xuping Zhang1、2, Zhewen Ding1, Rui Hong1, Xiaohong Chen1, Lei Liang1, Chi Zhang1, Feng Wang1, Ningmu Zou1、*, and Yixin Zhang1、2、**
Author Affiliations
  • 1Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, Jiangsu 210093, China
  • 2Shenzhen Research Institute, Nanjing University, Shenzhen, Guangdong 581000, China
  • show less
    DOI: 10.3788/AOS202141.0106004 Cite this Article Set citation alerts
    Xuping Zhang, Zhewen Ding, Rui Hong, Xiaohong Chen, Lei Liang, Chi Zhang, Feng Wang, Ningmu Zou, Yixin Zhang. Phase Sensitive Optical Time-Domain Reflective Distributed Optical Fiber Sensing Technology[J]. Acta Optica Sinica, 2021, 41(1): 0106004 Copy Citation Text show less
    References

    [1] Zhang X P[M]. Fully distributed optical fiber sensing technology(2013).

    [2] Taylor H F, Lee C E. Apparatus. -03-16[2020-08-09]. https:∥patents.justia.com/patent/5194847.(1993).

    [3] Cummins H Z, Gammon R W. Rayleigh and Brillouin scattering in benzene: depolarization factors[J]. Applied Physics Letters, 6, 171-173(1965). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1754220

    [4] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016). http://europepmc.org/abstract/MED/26832468

    [5] Peng F, Wu H, Jia X H et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines[J]. Optics Express, 22, 13804-13810(2014).

    [6] Wang Z N, Zeng J J, Li J et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification[J]. Optics Letters, 39, 5866-5869(2014).

    [7] Song M P, Zhu W J, Xia Q L et al. 151-km single-end phase-sensitive optical time-domain reflectometer assisted by optical repeater[J]. Optical Engineering, 57, 1-4(2018).

    [8] Fu Y, Wang Z N, Zhu R C et al. Ultra-long-distance hybrid BOTDA/Ф-OTDR[J]. Sensors (Basel, Switzerland), 18, 976-984(2018). http://www.ncbi.nlm.nih.gov/pubmed/29587407

    [9] Zhang J D, Wu H T, Zheng H et al. 80 km fading free phase-sensitive reflectometry based on multi-carrier NLFM pulse without distributed amplification[J]. Journal of Lightwave Technology, 37, 4748-4754(2019). http://ieeexplore.ieee.org/document/8723442/citations

    [10] Zhang C X, Zhong X, Li L J et al. Long-distance intrusion sensor based on phase sensitivity optical time domain reflectometry[J]. Infrared and Laser Engineering, 44, 742-746(2015).

    [11] Uyar F, Onat T, Unal C et al. A direct detection fiber optic distributed acoustic sensor with a mean SNR of 7.3 dB at 102.7 km[J]. IEEE Photonics Journal, 11, 1-8(2019).

    [12] Qin Z G, Chen L, Bao X Y. Wavelet denoising method for improving detection performance of distributed vibration sensor[J]. IEEE Photonics Technology Letters, 24, 542-544(2012).

    [13] Zou W W, Yang S, Long X et al. Optical pulse compression reflectometry: proposal and proof-of-concept experiment[J]. Optics Express, 23, 512-522(2015).

    [14] Zou W W, Yang S, Long X et al. Optical pulse compression reflectometry with 10 cm spatial resolution based on pulsed linear frequency modulation. [C]∥Optical Fiber Communication Conference, March 22-26, 2015, Los Angeles, California. Washington, D.C.: OSA, W31, 5(2015).

    [15] Lu B, Pan Z Q, Wang Z Y et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 42, 391-394(2017). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-42-3-391

    [16] Lu B, Wang Z Y, Zheng H R et al. High spatial resolution and long distance distributed optical fiber vibration sensing system[J]. Chinese Journal of Lasers, 44, 1015001(2017).

    [17] Zhang X P, Zhang Y X, Wang F et al. The mechanism and suppression methods of optical background noise in phase-sensitive optical time domain reflectometry[J]. Acta Physica Sinica, 66, 070707(2017).

    [18] Pan Z Q, Wang Z Y, Ye Q et al. High sampling rate multi-pulse phase-sensitive OTDR employing frequency division multiplexing[J]. Proceedings of SPIE, 9157, 91576X(2014).

    [19] He Q, Zhu T, Zhou J et al. Frequency response enhancement by periodical nonuniform sampling in distributed sensing[J]. IEEE Photonics Technology Letters, 27, 2158-2161(2015).

    [20] Iida D, Toge K, Manabe T. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR[J]. Optical Fiber Technology, 36, 19-25(2017). http://www.sciencedirect.com/science/article/pii/S1068520016301420

    [21] He X. Study on the fiber optical distributed wide-frequency vibration sensing based on Φ-OTDR[D]. Chongqing: Chongqing University(2015).

    [22] He H J, Shao L Y, Li Z L et al. Distributed vibration sensing with high frequency response based on frequency division multiplexing. [C]∥Optical Fiber Communication Conference, March 20-22, 2016, Anaheim, California. Washington, D.C.: OSA, M2D, 1(2016).

    [23] Zhang Y X, Xia L, Cao C Q et al. A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response[J]. Optics Communications, 382, 176-181(2017). http://www.sciencedirect.com/science/article/pii/S0030401816306216

    [24] Shan Y Y, Dong J Y, Zeng J et al. A broadband distributed vibration sensing system assisted by a distributed feedback interferometer[J]. IEEE Photonics Journal, 10, 1-10(2018). http://ieeexplore.ieee.org/document/8119481/

    [25] Zhao Z, Tang M, Wang L et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber[J]. Journal of Lightwave Technology, 36, 5764-5772(2018). http://ieeexplore.ieee.org/document/8513845/

    [26] Zhang X, Cao Q Y, Li Q et al. Laser frequency drift noise reduction in fiber-optic system based on φ-OTDR through a novel location algorithm[J]. Infrared and Laser Engineering, 44, 2150-2155(2015).

    [27] Zhu F, Zhang X P, Xia L et al. Active compensation method for light source frequency drifting in Phi-OTDR sensing system[J]. IEEE Photonics Technology Letters, 27, 2523-2526(2015). http://www.researchgate.net/publication/282899047_Active_Compensation_Method_for_Light_Source_Frequency_Drifting_in_Phi-OTDR_Sensing_System

    [28] Yuan Q, Wang F, Liu T et al. Compensating for influence of laser-frequency-drift in phase-sensitive OTDR with twice differential method[J]. Optics Express, 27, 3664-3671(2019). http://www.researchgate.net/publication/330827236_Compensating_for_influence_of_laser-frequency-drift_in_phase-sensitive_OTDR_with_twice_differential_method

    [29] Yuan Q, Wang F, Liu T et al. Using an auxiliary Mach-Zehnder interferometer to compensate for the influence of laser-frequency-drift in Φ-OTDR[J]. IEEE Photonics Journal, 11, 1943-1953(2019). http://ieeexplore.ieee.org/document/8556000/

    [30] Zinsou R, Wang Y, Liu X et al. Adaptive pulse period method for low-frequency vibration sensing with intensity-based phase-sensitive OTDR systems[J]. IEEE Access, 8, 41838-41846(2020). http://ieeexplore.ieee.org/document/9018390

    [31] Qin Z G, Zhu T, Chen L et al. High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR[J]. IEEE Photonics Technology Letters, 23, 1091-1093(2011).

    [32] Mao Y, Ashry I, Alias M S et al. Investigating the performance of a few-mode fiber for distributed acoustic sensing[J]. IEEE Photonics Journal, 11, 1-10(2019). http://ieeexplore.ieee.org/document/8839098

    [33] Wang C, Shang Y, Liu X H et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings[J]. Optics Express, 23, 29038-29046(2015).

    [34] Wang F, Liu Y, Wei T et al. Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach[J]. Optics Express, 27, 20468-20478(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510140

    [35] Fernandez-Ruiz M R, Martins H F, Pastor-Graells J et al. Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading[J]. Optics Letters, 41, 5756-5759(2016). http://www.ncbi.nlm.nih.gov/pubmed/27973523

    [36] Muanenda Y, Oton C J, Faralli S et al. A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR[J]. IEEE Photonics Journal, 8, 1943-1954(2016).

    [37] Alekseev A E, Tezadov Y A, Potapov V T. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source[J]. Laser Physics, 27, 055101(2017).

    [38] Fernandez-Ruiz M R, Martins H F, Costa L et al. Steady-sensitivity distributed acoustic sensors[J]. Journal of Lightwave Technology, 36, 5690-5696(2018). http://ieeexplore.ieee.org/document/8506415/

    [39] Zabihi M, Chen Y S, Zhou T et al. Continuous fading suppression method for Φ-OTDR systems using optimum tracking over multiple probe frequencies[J]. Journal of Lightwave Technology, 37, 3602-3610(2019). http://ieeexplore.ieee.org/document/8720050

    [40] Li J, Zhang Z T, Gan J L et al. Influence of laser linewidth on phase-OTDR system based on heterodyne detection[J]. Journal of Lightwave Technology, 37, 2641-2647(2019). http://ieeexplore.ieee.org/document/8573902/

    [41] Chen D, Liu Q W, Wang Y F et al. Fiber-optic distributed acoustic sensor based on a chirped pulse and a non-matched filter[J]. Optics Express, 27, 29415-29423(2019).

    [42] Zhu T, Xiao X H, He Q et al. Enhancement of SNR and spatial resolution in Φ-OTDR system by using two-dimensional edge detection method[J]. Journal of Lightwave Technology, 31, 2851-2856(2013). http://ieeexplore.ieee.org/document/6560397/references

    [43] Li Q, Zhang C X, Li L J et al. Signal-to-noise ratio enhancement of phase-sensitive optical time-domain reflectometry based on power spectrum analysis[J]. Optical Engineering, 53, 5690-5696(2014).

    [44] Yue H M, Zhang B, Wu Y X et al. Simultaneous and signal-to-noise ratio enhancement extraction of vibration location and frequency information in phase-sensitive optical time domain reflectometry distributed sensing system[J]. Optical Engineering, 54, 47101-47108(2015). http://spie.org/Publications/Journal/10.1117/1.OE.54.4.047101

    [45] He H J, Shao L Y, Li H C et al. SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm[J]. IEEE Photonics Journal, 9, 1-10(2017).

    [46] Zhang X P, Cao L, Shan Y Y et al. Performance optimization for a phase-sensitive optical time-domain reflectometry based on multiscale matched filtering[J]. Optical Engineering, 58, 56114-56122(2019). http://www.researchgate.net/publication/333518921_Performance_optimization_for_a_phase-sensitive_optical_time-domain_reflectometry_based_on_multiscale_matched_filtering

    [47] Shan Y Y, Ji W B, Wang Q et al. Performance optimization for phase-sensitive OTDR sensing system based on multi-spatial resolution analysis[J]. Sensors, 19, 83-93(2018).

    [48] Zhou L, Wang F, Wang X I et al. Distributed strain and vibration sensing system based on phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 27, 1884-1887(2015). http://ieeexplore.ieee.org/document/7122254

    [49] Zhang X P, Xia L, Zhang Y X et al. A new designed FBG and Φ-OTDR hybrid system for vibration and temperature sensing[C]∥2015 14th International Conference on Optical Communications and Networks (ICOCN), July 3-5, 2015, Nanjing, China.(2015).

    [50] Hu J H, Xia L, Yang L et al. Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques[J]. Optics Express, 24, 13610-13620(2016).

    [51] Zhang J D, Zhu T, Zhou H et al. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses[J]. Optics Express, 24, 27482(2016). http://www.onacademic.com/detail/journal_1000040493222010_2dcf.html

    [52] Zhou J. Research on the key techniques of multiple parameters of the distributed optical sensing system[D]. Chongqing: Chongqing University(2015).

    [53] Zhang Y X, Cai Y S, Xiong F et al. A hybrid distributed optical fibre sensor for acoustic and temperature fields reconstruction[J]. Optics Communications, 435, 134-139(2019). http://www.sciencedirect.com/science/article/pii/S0030401818309325

    [54] Zhang X P, Qiao W Y, Sun Z H et al. A distributed optical fiber sensing system for synchronous vibration and loss measurement[J]. Optoelectronics Letters, 12, 375-378(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171012000634x5A8D0

    [55] Zhang X P, Hu J H, Zhang Y X. A hybrid single-end-access BOTDA and COTDR sensing system using heterodyne detection[J]. Journal of Lightwave Technology, 31, 1954-1959(2013).

    [56] Ölçer I, Öncü A. Adaptive temporal matched filtering for noise suppression in fiber optic distributed acoustic sensing[J]. Sensors, 17, 1288-1315(2017). http://europepmc.org/articles/PMC5492096/

    [57] Qu H Q, Pang L P, Zheng T et al. Vibration detection method for optical fibre pre-warning system[J]. IET Signal Processing, 10, 692-698(2016). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7518541

    [58] Jia H Z, Liang S, Lou S Q et al. A k-nearest neighbor algorithm-based near category support vector machine method for event identification of φ-OTDR[J]. IEEE Sensors Journal, 19, 3683-3689(2019).

    [59] Sun Q, Feng H, Yan X Y et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors (Basel, Switzerland), 15, 15179-15197(2015).

    [60] Shi Y, Wang Y Y, Zhao L et al. An event recognition method for Φ-OTDR sensing system based on deep learning[J]. Sensors, 19, 3421-3430(2019). http://www.ncbi.nlm.nih.gov/pubmed/31382706

    [61] Liehr S, Jäger L A, Karapanagiotis C et al. Real-time dynamic strain sensing in optical fibers using artificial neural networks[J]. Optics Express, 27, 7405-7425(2019). http://www.researchgate.net/publication/331388763_real-time_dynamic_strain_sensing_in_optical_fibers_using_artificial_neural_networks

    [62] Zhang Y, Lou S Q, Liang S et al. Study of pattern recognition based on multi-characteristic parameters for φ-OTDR distributed optical fiber sensing system[J]. Chinese Journal of Lasers, 42, 1105005(2015).

    [63] Aktas M, Akgun T, Demircin M U et al. Deep learning based threat classification in distributed acoustic sensing systems[C]∥2017 25th Signal Processing and Communications Applications Conference(SIU), May 15-18, 2017, Antalya, Turkey.(2017).

    [64] Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Applied Optics, 46, 1968-1971(2007).

    [65] Sifta R, Munster P, Sysel P et al. Distributed fiber-optic sensor for detection and localization of acoustic vibrations[J]. Metrology and Measurement Systems, 22, 111-118(2015).

    [66] Yu X H, Zhou D L, Lu B et al. Phase-sensitive optical time domain reflectometer for distributed fence-perimeter intrusion detection[J]. Proceedings of SPIE, 9679, 96790S(2015). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2199685

    [67] Wang P F, Dong Q, Liu X et al. Coalbed methane transport pipeline intrusion detection system based on Φ-OTDR[J]. Chinese Journal of Sensors and Actuators, 32, 144-149(2019).

    [68] Luo J, Rao Y, Yue J et al. Highly sensitive distributed optical fiber intrusion monitoring system[J]. Chinese Journal of Scientific Instrument, 30, 1123-1128(2009).

    [69] Wu X, Wu H, Rao Y et al. Low misstatement rate distributed optical fiber fence intrusion detection system by variety of wavelet decomposition method[J]. Acta Photonica Sinica, 40, 1692-1696(2011). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZXB201111018.htm

    [70] Wang Z Y, Pan Z Q, Ye Q et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chinese Journal of Lasers, 42, 0405010(2015).

    [71] Zhong X, Gao X C, Deng H X et al. Pulse-width multiplexing ϕ-OTDR for nuisance-alarm rate reduction[J]. Sensors, 18, 3509-3521(2018). http://www.ncbi.nlm.nih.gov/pubmed/30340312

    [72] Daley T M, Freifeld B M, Ajo-Franklin J et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring[J]. The Leading Edge, 32, 699-706(2013).

    [73] Dou S, Lindsey N, Wagner A M et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study[J]. Scientific Reports, 7, 11620(2017).

    [74] Nørgaard Madsen K, Thompson M, Parker T et al. A VSP field trial using distributed acoustic sensing in a producing well in the North Sea[J]. First Break, 31, 51-56(2013). http://www.researchgate.net/publication/269490107_A_VSP_Field_Trial_Using_Distributed_Acoustic_Sensing_in_a_Producing_Well_in_the_North_Sea

    [75] Papp B, Donno D, Martin J E et al. A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments[J]. Geophysical Prospecting, 65, 1186-1204(2017). http://onlinelibrary.wiley.com/doi/10.1111/1365-2478.12471/abstract

    [76] Duckworth G L, Ku E M. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism[J]. Proceedings of SPIE, 8711, 87110G(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2017712

    [77] Lindsey N J, Martin E R, Dreger D S et al. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 44, 11792-11799(2017).

    [78] Ajo-Franklin J B, Dou S, Lindsey N J et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 9, 1328(2019). http://www.nature.com/articles/s41598-018-36675-8

    [79] Zhu T Y, Stensrud D J. Characterizing thunder-induced ground motions using fiber-optic distributed acoustic sensing array[J]. Journal of Geophysical Research: Atmospheres, 124, 12810-12823(2019). http://onlinelibrary.wiley.com/doi/10.1029/2019JD031453

    [80] Yu C Q, Zhan Z W, Lindsey N J et al. The potential of DAS in teleseismic studies: insights from the goldstone experiment[J]. Geophysical Research Letters, 46, 1320-1328(2019).

    [81] Zhang M, Liu F, Xie B et al. Development and field experiment of downhole optical fiber microseismic monitoring system. C]∥China Optical Fiber Sensing Conference and Industrialization Forum(OFS-China), April 27-29, 2019, Wu Han, China. Beijing: Chinese Society for Optical Engineering(2019).

    [82] Wang H F, Zeng X F, Miller D E et al. Ground motion response to an ML4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays[J]. Geophysical Journal International, 213, 2020-2036(2018). http://adsabs.harvard.edu/abs/2018GeoJI.tmp..103W

    [83] Lü P J. Requirements for downhole dynamic monitoring and application status of optical fiber detection. C]∥China Optical Fiber Sensing Conference and Industrialization Forum(OFS-China), April 27-29, 2019, Wu Han, China. Beijing: Chinese Society for Optical Engineering(2019).

    [84] Shi B. Distributed optical fiber sensing technology and its application in geological and geotechnical engineering monitoring. C]∥China Optical Fiber Sensing Conference and Industrialization Forum(OFS-China), April 27-29, 2019, Wu Han, China. Beijing: Chinese Society for Optical Engineering(2019).

    [85] Li Y P. Application of DAS system in the field of oilfield exploration. C]∥China Optical Fiber Sensing Conference and Industrialization Forum(OFS-China), April 27-29, 2019, Wu Han, China. Beijing: Chinese Society for Optical Engineering(2019).

    [86] Chai Q, Luo Y, Ren J et al. Review on fiber-optic sensing in health monitoring of power grids[J]. Optical Engineering, 58, 072007(2019). http://proceedings.spiedigitallibrary.org/journals/OE/volume-58/issue-07/072007/Review-on-fiber-optic-sensing-in-health-monitoring-of-power/10.1117/1.OE.58.7.072007.full

    [87] Zhang X P, Wu J L, Shan Y Y et al. On-line monitoring of power transmission lines in smart grid based on distributed optical fiber sensing technology[J]. Optoelectronic Technology, 37, 221-229(2017).

    [88] Xie K, Zhang H Y, Zhao Y S et al. Structural health monitoring of power transmission system based on optical fiber sensor under transmission line galloping[J]. Laser & Optoelectronics Progress, 55, 070606(2018).

    [89] Zhang X P, Wang Q, Xiong F et al. Performance enhancement method for phase-sensitive optical time-domain reflectometer system based on suppression of fading induced false alarms[J]. Optical Engineering, 59, 046101(2020). http://www.researchgate.net/publication/340360725_Performance_enhancement_method_for_phase-sensitive_optical_time-domain_reflectometer_system_based_on_suppression_of_fading_induced_false_alarms

    [90] Xu T. Application of high-voltage cable external protection monitoring and warning system based on distributed optical fiber vibration sensing[J]. Northeast Electric Power Technology, 41, 30-33(2020).

    [91] Wu J L, Ji W, Ye X Y et al[J]. Application of Φ-OTDR technology in power system optical cable monitoring Digital Communication World, 2020, 203-204, 212.

    [92] Xu J T. Global submarine optical cable market insights and development trends. C]∥Global Fiber Optic Cable Conference, November 18-20, 2019, Shanghai, China. Shanghai: APC(2019).

    [93] Wu F L, Xu J, Zheng X L et al. Research and application of optical fiber sensing technology in the submarine cable monitoring[J]. Electric Power Information and Communication Technology, 14, 72-76(2016).

    [94] Wu F L, Yang L F. First application of optical fiber composite technology in 110 kV submarine cable in China[J]. Electric Power, 44, 27-30(2011).

    [95] Zhang R Y, Xu Z F. Pay attention to the security of communication-sudden submarine cable failures reflect deep-seated problems: reasonable layout and vigorous promotion of .cn domain names are the key[J]. World Telecommunications, 22, 35-38(2009).

    [96] Paulsson B N P, Toko J L, Thornburg J A et al. Development of 300 °C fiber optic seismic sensors for geothermal reservoir imaging and monitoring[J]. Transactions Geothermal Resources Council, 37, 1043-1049(2013). http://www.researchgate.net/publication/289664706_Development_of_300C_fiber_optic_seismic_sensors_for_geothermal_reservoir_imaging_and_monitoring

    [97] Masoudi A, Pilgrim J A, Newson T P et al. Subsea cable condition monitoring with distributed optical fiber vibration sensor[J]. Journal of Lightwave Technology, 37, 1352-1358(2019).

    [98] . 500 kV marine cable monitoring system in Zhoushan, Zhejiang. http:∥zj.people.com.cn/n2/2019/0602/c186327-33002885.html..

    [99] Dong X H[J]. Research on the submarine optical cable disturbance monitoring system based on φ-OTDR technology Optical Fiber & Electric Cable and Their Applications, 2016, 32-33, 38.

    Xuping Zhang, Zhewen Ding, Rui Hong, Xiaohong Chen, Lei Liang, Chi Zhang, Feng Wang, Ningmu Zou, Yixin Zhang. Phase Sensitive Optical Time-Domain Reflective Distributed Optical Fiber Sensing Technology[J]. Acta Optica Sinica, 2021, 41(1): 0106004
    Download Citation