• Photonics Research
  • Vol. 7, Issue 7, 711 (2019)
Ying Yu1, Xiankun Zhang2, Zhangkai Zhou1, Zheng Zhang2, Yanjun Bao1, Haofei Xu1, Limin Lin1, Yue Zhang2、3、*, and Xuehua Wang1、4、*
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • 2State Key Laboratory for Advanced Metals and Materials, Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 3e-mail: yuezhang@ustb.edu.cn
  • 4e-mail: wangxueh@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000711 Cite this Article Set citation alerts
    Ying Yu, Xiankun Zhang, Zhangkai Zhou, Zheng Zhang, Yanjun Bao, Haofei Xu, Limin Lin, Yue Zhang, Xuehua Wang. Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal dichalcogenides[J]. Photonics Research, 2019, 7(7): 711 Copy Citation Text show less
    References

    [1] F. N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 8, 899-907(2014).

    [2] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [3] Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, A. T. S. Wee. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat. Commun., 7, 11283(2016).

    [4] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147-150(2011).

    [5] W. Y. Wang, A. Klots, D. Prasai, Y. M. Yang, K. I. Bolotin, J. Valentine. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett., 15, 7440-7444(2015).

    [6] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [7] Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X.-F. Jiang, H. Zhang, S. Wen. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep., 5, 16372(2015).

    [8] D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, X. H. Bao. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol., 11, 218-230(2016).

    [9] T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 317, 100-102(2007).

    [10] W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, J. C. Idrobo. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett., 13, 2615-2622(2013).

    [11] R. Addou, S. McDonnell, D. Barrera, Z. B. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, R. M. Wallace. Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano, 9, 9124-9133(2015).

    [12] H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. H. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, X. L. Zheng. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater., 15, 48-53(2016).

    [13] G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, J. Gómez-Herrero. Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys., 11, 26-31(2014).

    [14] H. Qiu, T. Xu, Z. L. Wang, W. Ren, H. Y. Nan, Z. H. Ni, Q. Chen, S. J. Yuan, F. Miao, F. Q. Song, G. Long, Y. Shi, L. T. Sun, J. L. Wang, X. R. Wang. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun., 4, 2642(2013).

    [15] Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, Z. H. Ni. Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation. Nano Res., 9, 3622-3631(2016).

    [16] H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, Z. H. Ni. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 8, 5738-5745(2014).

    [17] X. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, Y. Zhang. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun., 8, 15881(2017).

    [18] W. W. Zhao, Y. L. Wang, Z. T. Wu, W. H. Wang, K. D. Bi, Z. Liang, J. K. Yang, Y. F. Chen, Z. P. Xu, Z. H. Ni. Defect-engineered heat transport in graphene: a route to high efficient thermal rectification. Sci. Rep., 5, 11962(2015).

    [19] A. McCreary, A. Berkdemir, J. Wang, M. A. Nguyen, A. L. Elías, N. Perea-López, K. Fujisawa, B. Kabius, V. Carozo, D. A. Cullen, T. E. Mallouk, J. Zhu, M. Terrones. Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods. J. Mater. Res., 31, 931-944(2016).

    [20] J. Kibsgaard, Z. B. Chen, B. N. Reinecke, T. F. Jaramillo. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater., 11, 963-969(2012).

    [21] B. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater., 22, 4467-4472(2010).

    [22] G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, J. Hone. High-strength chemical-vapor-deposited graphene and grain boundaries. Science, 340, 1073-1076(2013).

    [23] Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, T. W. Lin. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 24, 2320-2325(2012).

    [24] Y. C. Lin, T. Bjorkman, H. P. Komsa, P. Y. Teng, C. H. Yeh, F. S. Huang, K. H. Lin, J. Jadczak, Y. S. Huang, P. W. Chiu, A. V. Krasheninnikov, K. Suenaga. Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun., 6, 6736(2015).

    [25] J. D. Fuhr, A. Saul, J. O. Sofo. Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface. Phys. Rev. Lett., 92, 026802(2004).

    [26] D. W. Wang, K. H. Wu, I. R. Gentle, G. Q. Lu. Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon, 50, 3333-3341(2012).

    [27] D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, R. S. Ruoff. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon, 47, 145-152(2009).

    [28] S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, D. Roy. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B, 91, 195411(2015).

    [29] A. C. Ferrari, D. M. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol., 8, 235-246(2013).

    [30] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 187401(2006).

    [31] W. T. Su, N. Kumar, A. Krayev, M. Chaigneau. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun., 9, 2891(2018).

    [32] R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, L. Novotny. Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology, 26, 175702(2015).

    [33] S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard, D. Roy. Probing individual point defects in graphene via near-field Raman scattering. Nanoscale, 7, 19413-19418(2015).

    [34] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, J. C. Hone. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater., 12, 554-561(2013).

    [35] H. R. Gutiérrez, N. Perea-Lopez, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urías, V. H. Crespi, H. Terrones, M. Terrones. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 13, 3447-3454(2013).

    [36] Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. L. Zou, W. Zhou, T. Yu, C. Y. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. H. Xia, M. Dubey, P. M. Ajayan, J. Lou. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun., 5, 5246(2014).

    [37] W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science, 338, 1317-1321(2012).

    [38] W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. J. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Q. Wu, M. B. Salmeron, P. J. Schuck. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun., 6, 7993(2015).

    [39] L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, H. Zhang. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater., 31, 1807981(2019).

    [40] Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater., 25, 6996-7002(2015).

    [41] Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao. Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance. Adv. Mater., 29, 1703811(2017).

    [42] S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, J. Q. Wu. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett., 13, 2831-2836(2013).

    [43] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [44] N. Kumar, Q. N. Cui, F. Ceballos, D. W. He, Y. S. Wang, H. Zhao. Exciton-exciton annihilation in MoSe2 monolayers. Phys. Rev. B, 89, 125427(2014).

    [45] D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. M. You, L. Brezin, A. R. Harutyunyan, T. F. Heinz. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett., 14, 5625-5629(2014).

    [46] H. N. Wang, C. J. Zhang, F. Rana. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett., 15, 339-345(2015).

    [47] R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, H. Zhao. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B, 86, 045406(2012).

    [48] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett., 99, 102109(2011).

    [49] M. Palummo, M. Bernardi, J. C. Grossman. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett., 15, 2794-2800(2015).

    [50] L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, M. C. Martin. Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys. Rev. B, 78, 235408(2008).

    [51] A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett., 96, 213116(2010).

    [52] S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, H. Choi. Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics. Phys. Rev. B, 88, 075434(2013).

    [53] A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol., 8, 634-638(2013).

    [54] Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, H. Zhang. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photon. Rev., 12, 1800016(2018).

    [55] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 12, 1700229(2018).

    [56] Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, H. Zhang. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photon. Rev., 13, 1800313(2019).

    Ying Yu, Xiankun Zhang, Zhangkai Zhou, Zheng Zhang, Yanjun Bao, Haofei Xu, Limin Lin, Yue Zhang, Xuehua Wang. Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal dichalcogenides[J]. Photonics Research, 2019, 7(7): 711
    Download Citation