• Photonics Research
  • Vol. 9, Issue 3, B45 (2021)
Jianhui Ma1, Zun Piao1, Shuang Huang1, Xiaoman Duan1, Genggeng Qin1, Linghong Zhou1、2、*, and Yuan Xu1、3、*
Author Affiliations
  • 1School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
  • 2e-mail: smart@smu.edu.cn
  • 3e-mail: yuanxu@smu.edu.cn
  • show less
    DOI: 10.1364/PRJ.413486 Cite this Article Set citation alerts
    Jianhui Ma, Zun Piao, Shuang Huang, Xiaoman Duan, Genggeng Qin, Linghong Zhou, Yuan Xu. Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation[J]. Photonics Research, 2021, 9(3): B45 Copy Citation Text show less
    References

    [1] P. J. Verheijen. Statistical distributions in particle technology. Particle Technology Course(2001).

    [2] D. A. Nix, A. S. Weigend. Estimating the mean and variance of the target probability distribution. Proceedings of the IEEE International Conference on Neural Networks (ICNN’94), 55-60(1994).

    [3] L. A. Dawson, D. A. Jaffray. Advances in image-guided radiation therapy. J. Clin. Oncol., 25, 938-946(2007).

    [4] L. A. Love, R. A. Kruger. Scatter estimation for a digital radiographic system using convolution filtering. Med. Phys., 14, 178-185(1987).

    [5] J. Star-Lack, M. Sun, A. Kaestner, R. Hassanein, G. Virshup, T. Berkus, M. Oelhafen. Efficient scatter correction using asymmetric kernels. Proc. SPIE, 7258, 72581Z(2009).

    [6] R. Ning, X. Tang, D. Conover. X-ray scatter correction algorithm for cone beam CT imaging. Med. Phys., 31, 1195-1202(2004).

    [7] J. S. Maltz, B. Gangadharan, M. Vidal, A. Paidi, S. Bose, B. A. Faddegon, M. Aubin, O. Morin, J. Pouliot, Z. Zheng. Focused beam‐stop array for the measurement of scatter in megavoltage portal and cone beam CT imaging. Med. Phys., 35, 2452-2462(2008).

    [8] L. Zhu, N. R. Bennett, R. Fahrig. Scatter correction method for X-ray CT using primary modulation: theory and preliminary results. IEEE Trans. Med. Imaging, 25, 1573-1587(2006).

    [9] G. Poludniowski, P. M. Evans, V. N. Hansen, S. Webb. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys. Med. Biol., 54, 3847-3864(2009).

    [10] E. Mainegra-Hing, I. Kawrakow. Fast Monte Carlo calculation of scatter corrections for CBCT images. J. Phys. Conf. Ser., 102, 012017(2008).

    [11] X. Jia, H. Yan, L. Cervino, M. Folkerts, S. B. Jiang. A GPU tool for efficient, accurate, and realistic simulation of cone beam CT projections. Med. Phys., 39, 7368-7378(2012).

    [12] Y. Xu, Y. Chen, Z. Tian, X. Jia, L. Zhou. Metropolis Monte Carlo simulation scheme for fast scattered X-ray photon calculation in CT. Opt. Express, 27, 1262-1275(2019).

    [13] A. Krizhevsky, I. Sutskever, G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097-1105(2012).

    [14] J. Long, E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440(2015).

    [15] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241(2015).

    [16] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).

    [17] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708(2017).

    [18] W. Zhao, B. Han, Y. Yang, M. Buyyounouski, S. L. Hancock, H. Bagshaw, L. Xing. Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT). Radiotherapy Oncol., 140, 167-174(2019).

    [19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski. Human-level control through deep reinforcement learning. Nature, 518, 529-533(2015).

    [20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot. Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484-489(2016).

    [21] C. Shen, Y. Gonzalez, L. Chen, S. B. Jiang, X. Jia. Intelligent parameter tuning in optimization-based iterative CT reconstruction via deep reinforcement learning. IEEE Trans. Med. Imaging, 37, 1430-1439(2018).

    [22] H. H. Tseng, Y. Luo, S. Cui, J. T. Chien, R. K. Ten Haken, I. El Naqa. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med. Phys., 44, 6690-6705(2017).

    [23] C. Shen, Y. Gonzalez, P. Klages, N. Qin, H. Jung, L. Chen, D. Nguyen, S. B. Jiang, X. Jia. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate Brachytherapy for cervical cancer. Phys. Med. Biol., 64, 115013(2019).

    [24] C. Shen, L. Chen, Y. Gonzalez, X. Jia. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy(2020).

    [25] C. Shen, D. Nguyen, L. Chen, Y. Gonzalez, R. McBeth, N. Qin, S. B. Jiang, X. Jia. Operating a treatment planning system using a deep‐reinforcement learning‐based virtual treatment planner for prostate cancer intensity‐modulated radiation therapy treatment planning. Med. Phys., 47, 2329-2336(2020).

    [26] J. M. Boone, J. A. Seibert. Accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV. Med. Phys., 24, 1661-1670(1997).

    [27] X. Jia, H. Yan, X. Gu, S. B. Jiang. Fast Monte Carlo simulation for patient-specific CT/CBCT imaging dose calculation. Phys. Med. Biol., 57, 577-590(2012).

    [28] E. Woodcock, T. Murphy, P. Hemmings, S. Longworth. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Conference on Applications of Computing Methods to Reactor Problems, 557-579(1965).

    [29] E. Jonsson, S. C. Huang, T. Chan. Total variation regularization in positron emission tomography(1998).

    [30] T. Le, R. Chartrand, T. J. Asaki. A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis., 27, 257-263(2007).

    [31] L. I. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60, 259-268(1992).

    [32] H. Van Hasselt, A. Guez, D. Silver. Deep reinforcement learning with double Q-learning(2015).

    [33] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [34] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. Grad-Cam: visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision, 618-626(2017).

    [35] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard. TensorFlow: a system for large-scale machine learning. 12th Symposium on Operating Systems Design and Implementation, 265-283(2016).

    [36] M. Knaup, J. Kuntz, S. Sawall, M. Kachelrieß. Real-time scatter estimation for medical CT using the deep scatter estimation: method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation. Med. Phys., 46, 238-249(2019).

    [37] D. C. Hansen, G. Landry, F. Kamp, M. Li, C. Belka, K. Parodi, C. Kurz. ScatterNet: a convolutional neural network for cone‐beam CT intensity correction. Med. Phys., 45, 4916-4926(2018).

    [38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958(2014).

    [39] B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn. Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur. Radiol., 9, 563-569(1999).

    [40] M. Baer, M. Kachelrieß. Hybrid scatter correction for CT imaging. Phys. Med. Biol., 57, 6849-6867(2012).

    [41] W. Zhao, S. Brunner, K. Niu, S. Schafer, K. Royalty, G. H. Chen. Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging. Phys. Med. Biol., 60, 1339-1365(2015).

    [42] M. Sun, J. Star-Lack. Improved scatter correction using adaptive scatter kernel superposition. Phys. Med. Biol., 55, 6695-6720(2010).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    [2] Qiuquan Yan, Qinghui Deng, Jun Zhang, Ying Zhu, Ke Yin, Teng Li, Dan Wu, Tian Jiang. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 2021, 9(8): 1493

    Jianhui Ma, Zun Piao, Shuang Huang, Xiaoman Duan, Genggeng Qin, Linghong Zhou, Yuan Xu. Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation[J]. Photonics Research, 2021, 9(3): B45
    Download Citation