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Particle distribution estimation is an important issue in medical diagnosis. In particular, photon scattering in
some medical devices extremely degrades image quality and causes measurement inaccuracy. The Monte Carlo
(MC) algorithm is regarded as the most accurate particle estimation approach but is still time-consuming, even
with graphic processing unit (GPU) acceleration. The goal of this work is to develop an automatic scatter es-
timation framework for high-efficiency photon distribution estimation. Specifically, a GPU-based MC simulation
initially yields a raw scatter signal with a low photon number to hasten scatter generation. In the proposed
method, assume that the scatter signal follows Poisson distribution, where an optimization objective function
fused with sparse feature penalty is modeled. Then, an over-relaxation algorithm is deduced mathematically
to solve this objective function. For optimizing the parameters in the over-relaxation algorithm, the deep
Q-network in the deep reinforcement learning scheme is built to intelligently interact with the over-relaxation
algorithm to accurately and rapidly estimate a scatter signal with the large range of photon numbers.
Experimental results demonstrated that our proposed framework can achieve superior performance with struc-
tural similarity >0.94, peak signal-to-noise ratio >26.55 dB, and relative absolute error <5.62%, and the lowest
computation time for one scatter image generation can be within 2 s. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.413486

1. INTRODUCTION

Particle distribution estimation is an important issue in medical
diagnosis because the principle of that distribution in some cru-
cial imaging devices follows the law of large numbers [1].
However, particle distribution estimation by only trillions of
particle sampling is extremely time-consuming. Thus, approxi-
mating a target function model on the basis of target distribu-
tion feature analysis can substantially hasten particle estimation
[2]. Particles fused with a target distribution feature for a few
particles have a promising prospect in rapid statistical estima-
tion without the loss of accuracy. As an important branch of
particle distribution estimation, photon scattering is commonly
involved in X-ray imaging, especially cone beam computed
tomography (CBCT), which has been widely used in medical
imaging given its high spatial resolution and low radiation dose
and for applications such as dental CBCT, image-guided radio-
therapy, and extremity CBCT [3]. Scatter occurs when photons

emitted from an X-ray source interact with a physical object
and can extremely degrade the reconstructed image quality
for clinical diagnosis, thereby leading to pixel-value inaccuracy.
Various methods have been proposed for scatter removal, in-
cluding the scatter kernel [4,5], beam stop array technique
[6,7], and primary modulator [8]. Nevertheless, these ap-
proaches require additional equipment or increase the irradia-
tion dose to the patient. The Monte Carlo (MC) particle
sampling approach has been proved to estimate accurate scatter
signals in a cost-efficient manner without the above disadvan-
tages [9–11]. The said technique can precisely simulate the
physical process of photon transport to produce all types of
scatters composed of Compton, Rayleigh, and photoelectric ef-
fect. In reality, one X-ray tube generates approximately 1 × 1013

source photons for imaging one projection under one angle
view. Therefore, the scatter simulation of photon transport
by only MC particle sampling is extremely time-consuming,
and this feature precludes its clinical application [12].
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To enhance its computational efficiency, the scatter signal is
typically simulated by an MC algorithm with a low photon
number, so the generated signal is noisy and fragmentary.
To overcome this problem, the noise-contaminated scatter sig-
nal is assumed to be governed by the Poisson distribution and
sparse feature representation. An efficient denoising algorithm
based on Poisson distribution and sparse feature fusion is pro-
posed to smooth the signal along the spatial dimension.
Nonetheless, the weight parameter between the Poisson distri-
bution and sparse feature does not follow a one-size-fits-all
trend for all cases with different photon numbers. Tuning
parameters manually for all situations is a trial-and-error pro-
cess, which calls for considerable time and effort. Moreover,
that scheme hinders a noise removal algorithm from reaching
an optimal solution of generating an accurate scatter signal via
ultra-low photons.

In the past few years, deep-learning algorithms have
achieved remarkable success across many fields, such as com-
puter vision and pattern recognition [13–18]. Deep-learning
methods build deep neural networks (DNN) to directly extract
local and global features from the dataset, an approach that can
avoid handcrafted selection [13]. Motivated by the powerful
performance of deep learning, the Google DeepMind group
integrated a neural network and reinforcement learning (RL)
algorithm to play Atari games with human-level performance
[19]. Afterwards, AlphaGo based on deep RL (DRL) defeated
human masters in the ancient Chinese game Go and attracted
global attention [20]. Shen et al. [21] proposed a parameter
tuning policy network to adjust pixel-wise parameters in iter-
ative computed tomography (CT) reconstruction and attain
comparable or better image quality. DRL was also applied in
radiotherapy for optimal dose adaptation and a treatment plan-
ning optimization problem [22–25]. These superior perfor-
mances have demonstrated that the DRL algorithm can
achieve a task analogous to human instincts. In DRL, an agent
represented by a DNN interacts with the environment to ex-
plore all possible consequences of the action for the highest re-
ward feedback. The agent acts according to their observation of
the environment, which, in turn, is changed by the action and
yields a new observation for the next step. Over many episodes,
the agent is supposed to develop an optimal policy to obtain
maximum rewards. Essentially, parameter tuning is a dynamic
decision-making process, for which DRL is highly suitable.
Inspired by the impressive achievements of pioneering work
and the rationale of DRL, we propose a framework to realize
automatic high-efficiency scatter estimation via the fusion of
MC particle sampling, statistical distribution features, and a
DRL scheme.

The remainder of this paper is organized as follows.
Section 2 describes the automatic scatter estimation framework
(ASEF), including its key components, namely, the MC particle
sampling algorithm, Poisson distribution and sparse feature-
based statistical distribution algorithm, and a DRL scheme.
Network interpretability and implementation details are also
introduced in the section. Section 3 evaluates the performance
of the proposed framework qualitatively and quantitatively.
Section 4 discusses and summarizes the strengths and
drawbacks.

2. METHODS AND MATERIALS

A. Automatic Scatter Estimation Framework
In this study, we propose an ASEF that integrates an MC
particle sampling algorithm (details depicted in Section 2.B),
a statistical distribution model fused with sparse feature
representation under the Poisson distribution assumption
(Section 2.C), and a DRL scheme (Section 2.D). The entire
framework is illustrated in Fig. 1. First, on the basis of the
X-ray source energy spectrum and system geometry configura-
tion, a graphic processing unit (GPU)-basedMC simulation ini-
tially yields a raw scatter signal with a low photon number to
hasten scatter generation. Second, assuming that the scatter sig-
nal follows Poisson distribution, an optimization objective func-
tion fused with sparse feature penalty is constructed. Then, an
over-relaxation algorithm is deduced mathematically to solve
this objective function. For optimizing the parameters in the
over-relaxation algorithm, a neural network called the deep
Q-network (DQN) is built to intelligently interact with the
over-relaxation algorithm for optimal scatter image quality.
Specifically, the well trained DQN, which possesses the optimal
policy of the highest rewards, takes an action to change the
parameters; then the over-relaxation algorithm yields a scatter
image based on the adjusted parameters for the next action
selection. After several tuning steps, the optimal parameters
can be determined when the highest cumulative rewards of a
sequence of steps are obtained. The scatter image yielded by
the over-relaxation algorithm with the optimal parameters is re-
ferred to as optimal quality.

B. Monte Carlo Particle Sampling Algorithm
An in-house MC simulation tool with a polychromatic energy
spectrum is utilized in this study for the MC particle sampling
of the scatter signal. The energy spectrum describes the prob-
ability density of a source photon as a function of its energy.
Such an energy spectrum can be specified by using the method
developed by Boone et al. [26]. According to tabulated data
including the attenuation coefficients and the cross sections
of Compton scattering, Rayleigh scattering, and the photoelec-
tric effect, each photon transporting through the imaging phan-
tom is simulated to compute the particle distribution in the
virtual detector. During the simulation, an indicator is carried
by each photon that records if any scattering events have taken
place during the transport. For different scattering events of
different orders, the photon will be marked by a number as
the indicator of the photon. For example, the indicators of
all primal photons are zero, and all first order Compton pho-
tons are marked one as the indicator. The CT volume of the
phantom is utilized to generate different material and density
information on the basis of the CT value via threshold-based
segmentation. The MC sampling scheme includes several real-
istic features, e.g., the polychromatic source spectrum, materi-
als and thicknesses of the detector, and beam collimation.

In the MC particle sampling, the scatter angles θ for
Rayleigh scattering are sampled from the expression for the dif-
ferential cross sections as

dσR
d�cos θ� � πr20F �E , θ,Z �2�1� cos2 θ�, (1)
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and the scatter angles θ for Compton scattering can be ex-
pressed as

dσC
d�cos θ� � πr20S�E , θ,Z ��P�E , θ� − P�E , θ�2sin2 θ

� P�E , θ�3�: (2)

Note that the photon energy is reduced after the Compton scat-
tering, and P�E , θ� is the ratio of the energy E 0 before scatter-
ing and the current energy E :

P�E , θ� � E 0

E
� 1

1� E
m0c2

�1 − cos θ� , (3)

where r0, c, and m0 separately indicate the electron radius, light
speed, and resting mass of one electron in Eqs. (1)–(3). The
functions F �E , θ,Z � and S�E , θ,Z � are the form factor and
the incoherent scattering function. Data for F �E , θ,Z � and
S�E , θ,Z � are generated from the gCTD package [27], which
is a fast MC simulation packge for patient-specific CBCT im-
aging or dose calculation. For shortening computation time,
scatter angles θ were not sampled by calculating Eqs. (1)
and (2) but were taken from the pre-calculated look-up table.
Electron transport is neglected in the simulation, as it cannot
reach the detector and will be absorbed in the phantom
immediately. Moreover, the Woodcock tracking algorithm
[28] is employed to avoid calculating the integral of photon
path attenuation voxel by voxel.

C. Scatter Statistical Distribution Model Based on
Poisson Distribution and Sparse Feature
Representation
It has been proved that the measurement determined by the
photon distribution statistics follows a Poisson distribution
[29,30]. The scatter signal Ŝ�u�, which is noise-contaminated,
is expected to approach true scatter S�u�, and thus its proba-

bility density function with expectation S�u� is defined as

P�x � Ŝ�u�� � S�u�Ŝ�u�
Ŝ�u�! e−S�u�, (4)

where u � �i, j� indicates the detector coordinate, for which i
and j denote the horizontal and vertical axes, respectively. Note
that measurements Ŝ�u� are independent of each other, and
thus

P�x � Ŝ� �
Z

SŜ

Ŝ!
e−Sdu: (5)

Moreover, Eq. (5) is maximal when Ŝ ≈ S, and we minimize
− log P�x � Ŝ� rather than maximizing P�x � Ŝ�. That is

arg min
S

Z
�S − Ŝ log S�du: (6)

Given the ill-posed nature of Eq. (6), a total-variation (TV)
regularization [31] is employed for the smoothness of the sol-
ution. Therefore, the formula based on Poisson distribution
and sparse feature representation can be defined as follows:

S�u� � arg min
S

Z
�S − Ŝ log S�du� β

2

Z
j∇Sj2du, (7)

where the first data-fidelity term is designed to ensure Poisson
distribution, and the second TV regularization term is formu-
lated for noise suppression. β is a hyper-parameter controlling
the relationship between the data-fidelity and regularization
terms. As Eq. (7) is convex, the derivative of its optimal solu-
tion is equal to zero, that is,�

1 −
Ŝ
S

�
− β∇2S � 0: (8)

Equation (8) can be discretized as

Fig. 1. Automatic scatter estimation framework. The MC algorithm generates raw scatter signals in terms of the X-ray source energy spectrum and
system geometry configuration. The DRL scheme (denoted by the dashed black arrow) employs a deep Q-network to interact with the statistical
distribution model to yield a satisfactory scatter image.
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�
1 −

Ŝ�i, j�
S�i, j�

�
− β∇2S�i, j� � 0, (9)

where the Laplacian operator ∇2S�i, j� � P
S�i, j� − 4S�i, j�,

and
P

S�i, j� stands for S�i − 1, j� � S�i � 1, j� � S�i, j−
1� � S�i, j� 1�. Then, an over-relaxation iteration algorithm
is employed to solve Eq. (7):

S�k�1��i, j� � �1 − ω�S�k��i, j�

� ω

4

�X
S�k��i, j� − 1

β

�
1 −

Ŝ�i, j�
S�k��i, j�

��
,

(10)

where the superscript k represents the iteration step, and ω is an
empirical constant to speed up convergence. Finally, the noise
free scatter signal S can be obtained by solving Eq. (10) iter-
atively.

D. Deep Reinforcement Learning

1. Double Deep Q-Network
Three hyper-parameters appear in Eq. (10): ω, β, and the num-
ber of iterations k to be determined. Typically, these variables
are set to a constant to obtain smoothed scatter images even
though the simulated photon number is different. Tuning
parameters manually for all situations is a trial-and-error pro-
cess, which calls for considerable time and effort. Moreover, this
approach restricts the over-relaxation algorithm from exploring
a global optimal solution for improved image quality. These
quality-related parameters are not one-size-fits-all for all cases
with different photon numbers. Consequently, we aim to uti-
lize a DRL scheme to intelligently seek out satisfactory images
like human behavior.

The Q-learning algorithm is a widely used approach, for
which the action-value function Qπ�s, a� is defined as the ex-
pectation of the rewards sum of all possible steps from the cur-
rent state s taking action a under policy π:

Qπ�s, a� � E�Gt jst � s, at � a�, (11)

Gt � rt � γrt�1 � γ2rt�2 � � � � �
X∞
m�1

γmrt�m, (12)

where Gt is the discounted rewards sum starting from step t, rt
is the reward at step t, and γ ∈ �0, 1� is a discount factor. The
Q-learning algorithm aims to explore an optimal policy to
maximize the action-value function:

Q	
π�s, a� � max

π
Qπ�s, a�: (13)

The optimal action-value function Q	
π�s, a� can be solved iter-

atively via the Bellman equation:

Q	
π�s, a� � r � γmax

a 0
Q	

π�s 0, a 0�, (14)

where r denotes the reward after adopting action a to the cur-
rent state s, and s 0 is the next state following the current state s
under action a. Equation (14) entails expensive computation
when the state and action involve extensive dimensions.
Thus, we adopt a convolutional neural network (CNN)
Qπ�s, a;W � to approximate the Q function Qπ�s, a�, such that
a quadratic loss function defined as Eq. (15) can be minimized
to force Qπ�s, a;W � to approach optimal Q	

π�s, a;W �:

L � Ef�r � γmax
a 0

Qπ�s 0, a 0;W � − Qπ�s, a;W ��2g: (15)

To enhance the training stability of Qπ�s, a;W �, a separate tar-
get network Q̂π�s, a; Ŵ �, whose architecture is the same as the
main network Qπ�s, a;W �, is constructed following the proto-
col in Ref. [19]. The weights Ŵ of Q̂π�s, a; Ŵ � will be fixed
when the main network weight W is updated according to the
gradient of loss function defined as

L � Ef�r � γmax
a 0

Q̂π�s 0, a 0; Ŵ � − Qπ�s, a;W ��2g· (16)

After several training steps, Ŵ is updated with W ; that is,
Ŵ � W . The approach based on the Q-learning algorithm
and DNN is referred to as DQN. The DQN tends to over-
estimate the action-value function, so we use double DQN
(DDQN) for improved robustness [32]. The DDQN utilizes
the main network Qπ�s, a;W � to select the action correspond-
ing to the maximum Q-value, which is the output value of the
network, namely, a 0 � arg maxa 0 �Qπ�s 0, a 0;W ��. Then, action
a 0 will be utilized in the target network Q̂π�s 0, a 0; Ŵ � to predict
the Q-value. That is,

L�Effr�γQ̂πfs 0, argmax
a 0

�Qπ�s 0,a 0;W ��;Ŵ g−Qπ�s,a;W �g2g:

(17)

2. Reward Function
In DRL, the agent aims to take step-by-step action toward the
desired situation by obtaining highest rewards. Therefore, the
reward is supposed to faithfully evaluate the quality of state s. In
this study, state s represents the scatter image per angle.
Consequently, we employ structural similarity (SSIM) [33] to
construct the reward function. The SSIM is a perceptual metric
that can quantitatively measure the similarity between two im-
ages x and y, focuses on luminance, contrast, and structure, and
is defined as

SSIM�x, y� � �2μxμy � c1��2σxy � c2�
�μ2x � μ2y � c1��σ2x � σ2y � c2�

, (18)

where μx and μy separately denote the average of x and y, σ2x and
σ2y represent variance, and σxy is the covariance of x and y. A
higher SSIM indicates greater similarity between two images.
Therefore, the reward function consists of the SSIM of the state
and ground truth formulated as

rt � sgn�SSIM�st�1, sgt� − SSIM�st , sgt��, (19)

where sgt denotes the ground truth of the scatter, and the first
and second terms separately measure the SSIM of the scatter at
step t with the ground truth and the SSIM between the scatter
at step t � 1 and ground truth. rt will be positive if st�1 is
closer to the ground truth compared with the previous state
st , such that it can inspire the DDQN to improve the generated
scatter quality toward the desired image quality. sgn indicates
the sign function, which transfers a positive number to 1 and a
negative number to −1. As suggested in Ref. [19], the sign func-
tion is applied to rescale the reward for the scale limitation of
the error derivatives.

3. Training Process of the DDQN
In this study, action a has three possible actions: increase or
decrease the parameter by 20% and keep it invariant. Some
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researches [21,23] specified the amount of parameter change
with different amplitudes. Because the reward function defined
in Eq. (19) utilizes the sign function to restrict the scale of the
error derivatives, the network cannot differentiate between re-
wards of different magnitudes. Therefore, we arbitrarily select
20% as the parameter amplitude. We build our network
W � fW k,W ω,W βg containing three subnetworks to re-
present three parameters in the over-relaxation algorithm de-
fined as Eq. (10). These subnetworks fW k,W ω,W βg possess
the same architecture illustrated in Fig. 2. We repeatedly train
fW k,W ω,W βg f orN episode times, and each episode has a series
of steps. At step t, one of the three subnetworks
fW k,W ω,W βg is randomly selected with equal probability.
Then, the ε-greedy algorithm is adopted to select an action
to adjust the parameter. Specifically, we select a random action
at with probability ε; otherwise, the action corresponding
to the highest Q-value is selected, i.e., at �
arg maxa�Qπ�st , a;W ��. Afterward, the parameter is adjusted
according to at , and the over-relaxation algorithm is solved
to generate a new scatter st�1 as the state for the next step.
Equation (19) takes st and st�1 to calculate the reward rt .
The dataset fst , at , rt , st�1g is then stored in the experience re-
play memoryD to mitigate the correlation between the training
dataset generated in successive steps. Subsequently, networkW
is trained by randomly sampling a mini-batch of dataset from
D. fW k,W ω,W βg will be updated via minimizing loss func-
tion in Eq. (17). Finally, update target network weights
fŴ k, Ŵ ω, Ŵ βg with fW k,W ω,W βg, i.e., let fŴ k,
Ŵ ω, Ŵ βg � fW k,W ω,W βg every N update steps. The training
process of the DDQN is summarized in Table 1, and the re-
lated parameter values are defined in Table 2.

E. DDQN Interpretability
The DDQN can predict an action under the optimal policy.
However, the mechanism by which the DDQN takes action in
terms of the current state remains unclear. To interpret the
DDQN, a gradient-weighted class activation map (Grad-
CAM) [34] is utilized to highlight crucial regions in the state
for action prediction. The Grad-CAM can yield a localization
map using the gradient of output with respect to the last

convolution layer to locate regions that are much more impor-
tant for DDQN decision making. More concretely, Grad-CAM
initially calculates the gradient of theQ-value qa with respect to
the feature map Ak of the last convolutional layer whose width
and height are separately indexed by i and j, namely, ∂qa

∂Ak
ij
. Then,

these gradients are backpropagated and global-average-pooled
to attain weights αak for every feature map, i.e., αak �
1
Z

P
i
P

j
∂qa

∂Ak
ij
. The Grad-CAM heatmap is the sum of the

weighted feature maps and followed by a rectified linear unit
(ReLU): LaGrad-CAM � ReLU�Pkα

a
kA

k�. Finally, the Grad-
CAM heatmap is upsampled to the input state size.

F. Implementation Details
In this study, we utilize one Nvidia TITAN Xp GPU and four
Intel Core i7 3.6 GHz processors with 40 GB memory to im-
plement the framework using TensorFlow [35]. Equation (10)
is a noise removal algorithm in the projection domain.
Therefore, the scatter S is a projection whose resolution is
512 × 384. Six groups of scatter datasets are present with

Fig. 2. Network architecture in the DDQN. The network takes a
scatter image as input and predicts three possible actions for parameter
adjustment. The number at the top denotes the feature map size and
channel number, and the operations for each layer are presented at the
bottom. For instance, the first hidden layer convolves 16 filters of 3 × 3
with stride four with the input layer followed by a rectified linear unit
(ReLU) activation function, and the output layer is a fully connected
linear layer with three outputs.

Table 1. DDQN Training Process

1. Initialize main network weights W and target network weights Ŵ
2. For episode � 1, 2,…, N episode do
3. For projection � 1, 2,…,N prj do
4. Initialize fk0,ω0, β0g
5. Generate s1 using Eq. (10) with fk0,ω0, β0g
6. For t � 1, 2,…, N step do
7. Randomly select one subnetwork from fW k ,W ω,W βg
8. With probability ε select action at randomly
9. Otherwise choose at � arg maxa �Qπ�st , a;W ��
10. Adjust parameters fkt ,ωt , βtg according to at
11. Generate st�1 using Eq. (10) with fkt ,ωt , βtg
12. Compute reward rt using Eq. (19)
13. Store dataset fst , at , rt , st�1g in experience replay D
14. Randomly sample a mini-batch of dataset from D
15. Compute the gradient of loss function in Eq. (17)
16. Update main network weights W � fW k ,W ω,W βg
17. For every N update steps, let Ŵ � W
18. End For
19. End For
20. End For

Table 2. Parameters in the DDQN Training Phase

Parameters Values Descriptions

N episode 100 Number of training episodes
N prj 45 Number of training projections
N step 30 Number of steps for each episode
N update 20 Number of steps for target network

weights update
D 2000 Capacity of experience replay memory
ε [0.01, 1] Probability of random action in ε-greedy

algorithm
γ 0.6 Discount factor
l r 0.001 Learning rate of gradient descent for main

network
N batch 64 Mini-batch samples for network training
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different photon numbers of 5 × 105, 1 × 106, 5 × 106, 1 × 107,
1 × 108, and 1 × 109. Each dataset contains 90 projections. As
shown in Fig. 3(i), a raw scatter signal generated from MC
simulation with 1 × 1012 particles is almost noise free and
taken as the ground truth. We randomly select 45 of 90 scatter
images at 1 × 106 for training. The 45 images whose angles

differ from those of the training cases in the six groups are
chosen as the testing cases. Therefore, the total number of test-
ing cases is 270.

3. RESULTS

A. MC Particle Sampling Algorithm
Figures 3(b)–3(i) present the raw scatter signals of the projec-
tion produced by the MC particle sampling algorithm with dif-
ferent photon numbers. Figure 3(a) is the primary signal of the
projection generated by a typical 100 kVp poly-energetic spec-
trum with about 100 energy channels. Clearly, Figs. 3(b)–3(h)
severely suffer from noise contamination because of the defi-
ciency of source photons (less than 1 × 1012), whereas Fig. 3(i)
shows the MC algorithm that can precisely yield a desirable
quality scatter image after the 1 × 1012 photons was simulated.
The quantitative evaluation of image similarity and time cost is
shown in Tables 3 and 4, respectively. As presented in Table 4,
simulating one projection via MC with 1 × 1011 photons costs
6402.60 s. The computation time of the MC particle sampling
algorithm exponentially increases with the growth of the pho-
ton number. Therefore, directly producing an approved scatter
signal through the MC algorithm would be impractical.

B. Over-Relaxation Smoothing Algorithm for Scatter
Estimation
Figures 4(a)–4(g) are the corresponding smoothed scatter sig-
nals of Figs. 3(b)–3(h) manipulated by an over-relaxation
smoothing algorithm with empirical parameters (k � 700,
ω � 0.8, and β � 1 × 10−11), which is denoted as Empirical
for simplicity. The raw scatter projection with 1 × 1012 pho-
tons, as shown in Fig. 4(h), is employed as the ground truth
for comparison. The over-relaxation smoothing algorithm can
improve scatter image quality among all cases compared to the
corresponding raw scatter images. Figures 4(f ) and 4(g) are vis-
ually similar to Fig. 4(h). Figure 4(e) is slightly rough, whereas
Figs. 4(a)–4(d) are severely noisy and fragmentary. The inten-
sity profiles of Figs. 4(a)–4(h) along the row and column in-
dicated by an orange line in Fig. 4(h) are plotted to further
validate the performance of the over-relaxation smoothing al-
gorithm. As shown in Figs. 5(a) and 5(b), the intensity profiles
of Figs. 4(f ) and 4(g) follow exactly the same trend as that in
Fig. 4(h). Moreover, the profile lines of Figs. 4(a)–4(e) still

Fig. 3. (a) is the primary projection of the head and neck (H&N)
patient; (b)–(i) represent raw scatter projections that are separately cal-
culated by the MC particle sampling algorithm with source photons of
5 × 105, 1 × 106, 5 × 106, 1 × 107, 1 × 108, 1 × 109, 1 × 1010, and
1 × 1012 for the same projection angle.

Fig. 4. (a)–(g) are the scatter images of Figs. 3(b)–3(h) smoothed by
the over-relaxation smoothing algorithm; (h) corresponds to Fig. 3(i),
which is considered a noise free scatter image and utilized as the
ground truth.

(a) (b)

Fig. 5. Intensity profiles of Fig. 4 along the (a) horizontal and (b) vertical directions as denoted by the orange lines in Fig. 4(h).
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oscillate. Therefore, the over-relaxation smoothing algorithm
performs well when the photon number is no less than 1 × 109.

C. Scatter Estimation Performance Comparison
To validate its scatter estimation performance, the proposed
framework named ASEF is compared with Empirical among
six testing groups with dissimilar photon numbers. As depicted
in Fig. 6, Empirical alleviates the noise component to some ex-
tent but remains inferior compared to ASEF. Although both
Empirical and ASEF results degrade as the number of source
photons decreases, ASEF scatter images are much more consis-
tent in quality improvement. For the most challenging case
with 5 × 105 source photons in the first row of Fig. 6, the
Empirical scatter image is severely distorted after the over-relax-
ation smoothing algorithm. By contrast, the ASEF can substan-
tially remove noise and restore the true scatter signal from raw
scatter. The ASEF scatter image is visually smoother and similar
to the ground truth.

The intensity profiles of Fig. 6 along the vertical direction
exhibit the scatter variation trend shown in Fig. 7. Figures 7(a)–
7(c) indicate that the ASEF can follow a similar trend to the
ground truth, whereas the profile of Empirical oscillates di-
versely because of the existence of noise. Figure 7(d) suggests
that both Empirical and ASEF can obtain satisfactory scatter
image quality for the 1 × 109 case. However, ASEF possesses
a powerful capability of exploring optimal solutions for differ-
ent source photons (Figs. 6 and 7).

For quantitative evaluation, the SSIM, peak signal-to-noise
ratio (PSNR), and relative absolute error (RAE) are employed,
in which PSNR and RAE are defined as

Fig. 6. From top to bottom: six testing results with 5 × 105,
1 × 106, 5 × 106, 1 × 107, 1 × 108, and 1 × 109 source photons.
From left to right: primary signals, smoothed scatter signals restored
by the over-relaxation algorithm with empirical parameters, smoothed
scatter signals restored by the proposed framework, and the ground
truth.

(a) (b)

(c) (d)

Fig. 7. (a)–(d) Intensity profiles of the first, second, third, and last rows in Fig. 6. The locations of the profiles (a)–(d) are denoted by orange lines
at the last column of Fig. 6.
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PSNR � 10 log10

�
MAX2

MSE

�
, (20)

RAE �
Xm
i�1

Xn
j�1

js�i, j� − sgt�i, j�j
jsgt�i, j�j

, (21)

where MSE � 1
m×n

Pm
i�1

Pn
j�1 �s�i, j� − sgt�i, j��2. MAX de-

notes the maximum value of scatter signal s with dimen-
sion m × n.

The SSIM, PSNR, and RAE are treated as three metrics to
compare the smoothed scatter results using Empirical and ASEF
methods. The result across all testing cases is summarized in
Table 3. It is observed that the RAE of ASEF is minimal among
all different orders of photon numbers, whereas the SSIM and
PSNR are maximal compared to the Empiricalmethod. Table 3
suggests that for the 5 × 105 source photons case referred to as
the most challenging case in this study, the ASEF can achieve
satisfactory performance with SSIM > 0.94, PSNR >

26.55 dB, and RAE < 5.62%. Conversely, the SSIM,
PSNR, and RAE of Empirical are 0.79, 21.54 dB, and
12.03%, respectively. The boxplots of the metric difference be-
tween Empirical and ASEF are plotted in Figs. 8(a)–8(c). We
define metric difference as metricdiff � metricEmpirical−
metricASEF. Note that the black line in the box denotes the
median of difference statistics for each case. In the figure,
the absolute value of the difference statistically becomes larger
in the SSIM, PSNR, and RAE metrics with the decrease of the
source photons. Figure 8(d) shows the SSIM comparison of
Empirical and ASEF methods, where it is observed that
ASEF is more robust among different photon number cases.

To demonstrate the efficiency of the proposed framework,
we recorded the computation time of the MC particle sampling
algorithm and DRL scheme for one scatter image generation
using different photon numbers. MC and DRL are speeded
up with one Nvidia TITAN Z GPU with 6 GB memory.
Table 4 indicates that the computation burden of the
MC algorithm exponentially reduces as the number of photons

Table 3. SSIM, PSNR, and RAE Statistics (avg:
 std:) among All Testing Casesa

Photon Number

SSIM (1 � Best) PSNR (dB) RAE (%)

Empirical ASEF Empirical ASEF Empirical ASEF

avg. std. avg. std. avg. std. avg. std. avg. std. avg. std.

5 × 105 0.79 4.70 × 10−2 0.94 2.36 × 10−2 21.54 0.85 26.55 1.34 12.03 1.27 × 10−2 5.62 1.27 × 10−2
1 × 106 0.88 3.73 × 10−2 0.96 1.67 × 10−2 23.99 0.72 29.05 1.22 8.52 9.65 × 10−3 4.22 6.53 × 10−3
5 × 106 0.97 8.83 × 10−3 0.99 3.85 × 10−3 30.26 0.91 33.76 1.03 3.81 4.69 × 10−3 2.42 3.25 × 10−3
1 × 107 0.98 4.31 × 10−3 0.99 2.02 × 10−3 33.19 0.83 36.05 0.89 2.68 3.14 × 10−3 1.87 2.35 × 10−3
1 × 108 0.99 4.96 × 10−4 0.99 3.97 × 10−4 43.03 0.82 43.96 0.73 0.84 9.31 × 10−4 0.74 7.36 × 10−4
1 × 109 0.99 4.84 × 10−5 0.99 4.64 × 10−5 52.97 0.91 53.12 0.89 0.27 3.26 × 10−4 0.26 3.06 × 10−4

aBold indicates the better result for each photon number case under the same metric.

Fig. 8. (a)–(c) indicate boxplots of the metric difference of SSIM, PSNR, and RAE between Empirical and ASEF for all testing cases.
metricdiff � metricEmpirical −metricASEF, where metric denotes SSIM, PSNR, and RAE, respectively. (d) is the boxplot of the SSIM comparison
of Empirical and ASEF.
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decrease. The DRL scheme is an interaction process of the neu-
ral network and the noise removal algorithm. The computation
cost of the neural network is negligible, so the computation
time of DRL is dominated by the noise removal algorithm.
Note that the DRL process is comprised of a sequence of steps,
where the raw scatter with fewer photons takes DRL more steps
to find out the optimal parameters. To improve the computa-
tional efficiency, the DRL framework is initialized with empiri-
cal parameters. When the source photons are no less than
1 × 109, DRL just takes one step to reach the optimal solution,
so the computation time of DRL for the last three photon num-
bers in Table 4 is fixed. Briefly, the overall computation time of
the proposed ASEF can be reduced to ∼1.81 s without loss of
quality, an outcome which is extremely fast in the MC simu-
lation domain.

D. Automatic Scatter Estimation Process
Figure 9 presents the result during the automatic scatter esti-
mation of the ASEF for a testing case. Figures 9(a)–9(c) are
smoothed scatter images at Steps 1, 7, and 13, respectively.
Visually, the image quality of the scatter signal is gradually
ameliorated with a sequence of tuning steps. This outcome im-
plies that the DDQN has learned an optimal policy to wisely
make decisions for parameter adjustment. The SSIM and RAE
results over steps are shown in Figs. 9(d) and 9(e). As expected,
the SSIM increases step by step, whereas the RAE decreases
over steps. Thus, the ASEF can improve scatter image quality
intelligently.

E. Grad-CAM Heatmap
The Grad-CAM heatmaps of the three subnetworks
fW k,W ω,W βg are simultaneously produced when ASEF is
verified in the testing case. These heatmaps are upsampled
to match the original scatter image size for exhibition and nor-

malized in [0,1], where the prominent region denoted as the
red area makes critical contributions to action choice.
fW k,W ω,W βg take the first column of Fig. 10 to predict
an action and produce the Grad-CAM heatmaps for each sub-
network shown in the last three columns. The second column
is the corresponding ground truth of the first column for visu-
alization comparison. The rows in Fig. 10 represent different
scatter images. Note that the high-intensity region of the scatter
image in the first row is at the bottom left, whereas the high-
intensity area at the third row is close to the image center. The
image at the second row has two highlighted regions, for which
the major and minor areas are separately located at the bottom
and top left. The salient region of the heatmap is approximately
located in a high scatter intensity area. The Grad-CAM heat-
maps follow a similar scatter intensity distribution of the input
state (first column), thereby implying that all three subnet-
works consider higher values as crucial features for action pre-
diction. This inference is reasonable because higher scatter
intensities are more likely to suffer from noise contamination
compared to lower scatter intensity signals.

F. Generalization Verification
All of the above training and testing cases are the scatter images
of a head and neck (H&N) patient; since the proposed frame-
work can improve image quality dynamically in a manner sim-
ilar to human intelligence, we utilize scatter images of a prostate
patient to further verify it. As depicted by the primary signals in
Fig. 11, imaging of the pelvis is so large that it exceeds the field

Table 4. Computation Time for One Scatter Image of a Prostate Patient across Different Photon Numbers

Computation Time (s)

5 × 105 1 × 106 5 × 106 1 × 107 1 × 108 1 × 109 1 × 1010 1 × 1011

MC 0.43 0.45 0.57 0.83 5.94 60.00 633.95 6402.60
DRL 8.98 4.80 1.94 0.98 0.32 0.29 0.29 0.29
Total 9.41 5.25 2.51 1.81 6.26 60.29 634.24 6402.89

Fig. 9. Automatic scatter estimation process for a testing case. (a)–
(c) are smoothed scatter images at Steps 1, 7, and 13, respectively.
(d) and (e) separately plot the SSIM and RAE over steps.

Fig. 10. Different scatter images. From left to right: scatter projec-
tion input, the ground truth of the scatter image at the first column,
and Grad-CAM heatmaps of three subnetworks fW k ,W ω,W βg.
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of view (FOV) of a CBCT scan. Thus, the projections of the
prostate structure are usually acquired by means of half-fan
scanning protocol. It is observed that ASEF is superior
compared with Empirical for all prostate cases. Moreover,
the intensity profiles of ASEF in Fig. 12 are more similar to
the corresponding lines of ground truth, in comparison
to the tortuous Empirical lines.

4. DISCUSSION

As verified in Fig. 3 and Table 4, producing high-quality par-
ticle distribution only by the MC algorithm is time-consuming,
although the process is speeded up using GPUs. Reducing
source photons can considerably improve computational effi-
ciency but lead to noise contamination on the scatter signals.
Therefore, an efficient noise removal algorithm based on
Poisson distribution and sparse feature fusion is proposed to
solve the above issue. The suggested algorithm can effectively
make the quality of the scatter signal close to the undistorted
signal but degrade gradually for a lower photon number (Figs. 4
and 5). High photon number cases (source photons of over
1 × 109) can be used for experimental study, which requires
good quality at the cost of computation time. Meanwhile,
ultra-low photon number cases are applied for clinics since
the computation time is considered as a crucial factor in clinics.
The DRL scheme is employed to boost the performance of the
noise removal algorithm for ultra-low photon number cases. In
this way, an automatic scatter estimation scheme suitable for
the large range of photon numbers is constructed.

In the study, Figs. 6 and 7 depict the proposed framework
that can produce satisfactory scatter signals with different
source photons. Table 3 summarizes the results of SSIM,
PSNR, and RAE across all testing H&N cases and indicates
that ASEF can achieve good performance with SSIM > 0.94,
PSNR > 26.55 dB, and RAE < 5.62%. Figure 8 further
proves that our framework was robust across different
photon numbers. The computational time of ASEF run on
the GPU as recorded in Table 4 reveals that our approach is

Fig. 11. From top to bottom: four prostate cases with 5 × 105,
1 × 106, 5 × 106, and 1 × 107 source photons. From left to right: pri-
mary signals, smoothed scatter signals restored by the over-relaxation
algorithm with empirical parameters, smoothed scatter signals restored
by the proposed framework, and the ground truth.

(a) (b)

(c) (d)

Fig. 12. (a)–(d) Intensity profiles of the four prostate cases presented in Fig. 11. Profile locations are outlined by orange lines in the last column of
Fig. 11.
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highly efficient with ∼1.81 s for one scatter projection
generation.

The Grad-CAM heatmap was applied to visualize how the
DDQN makes action decisions. The region crucial for action
prediction is identified in Fig. 10. Obviously, all three
subnetworks had conformal intensity distributions similar to
the scatter signal, thereby suggesting that the network tends
to focus on high scatter intensity areas in view of the fact that
the effect of noise on the higher-value region is greater than that
in the lower-value counterpart.

We also validated the generalization of the proposed frame-
work on a prostate patient while the DDQN was trained with
scatter images of an H&N patient. The scatter signal of prostate
patient is much sparser than the H&N scatter signal because
the former is acquired by a half-fan scanning protocol. Four
prostate scatter projections with 5 × 105, 1 × 106, 5 × 106,
and 1 × 107 source photons are validated to exhibit the perfor-
mance. As shown in Fig. 11, the scatter projections by the pro-
posed framework across all cases with different photon numbers
were visually superior, and the intensity profiles in Fig. 12 dem-
onstrated the desired performance as well.

With the rapid development of deep-learning algorithms, it
is intuitive and straightforward to build end-to-end CNN for
scatter removal. Moreover, several researches [36,37] have dem-
onstrated successful applications of this scheme. However,
some weaknesses and limitations exist to some extent.
Training the CNN requires numerous paired data for which
scatter projections calculated by the MC algorithm are gener-
ally considered as output labels for supervised learning. As men-
tioned before, yielding an excellent scatter image with adequate
source photons will take substantial time; not to mention, hun-
dreds of scatter projections are required to avoid over-fitting
[38]. In addition, scatter signals are highly dependent on
the CT geometry configuration and X-ray source energy spec-
trum [39–42], and the CNNmodel trained on a dataset may be
inappropriate for other types of datasets. Note that only 45
scatter images are used in our DRL training phase. Because
of the DRL training strategy illustrated in Table 1, the training
datasets stored in the experience replay pool with the capacity
of 2000 are fst , at , rt , st�1g rather than 45 images.
Furthermore, the training datasets are dynamically updated
as the steps change, so there are abundant training data for
the neural network model.

5. CONCLUSION

In this study, we proposed an ASEF integrating an MC particle
simulation algorithm, statistical distribution model fused with
sparse feature representation under Poisson distribution, and a
DRL scheme for high-efficiency photon distribution estima-
tion. Experimental results demonstrated that our proposed
framework has superior performance for the high-efficiency
scatter estimation of large range photon numbers.
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