• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 1, 2250002 (2022)
[in Chinese]1、2, [in Chinese]3, [in Chinese]1, [in Chinese]1、*, and [in Chinese]2
Author Affiliations
  • 1Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Jiangjun Ave. 29, Nanjing 210016, P. R. China
  • 2Anqing Municipal Hospital, Renmin Road 352, Anqing 246003, P. R. China
  • 3College of Information and Communication Engineering, Nanjing Institute of Technology, Hongjing Avenue 1, Nanjing 211167, P. R. China
  • show less
    DOI: 10.1142/s179354582250002x Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research on the relationship between reduced scattering coe±cient and intracranial pressure in brain edema model[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2250002 Copy Citation Text show less
    References

    [1] M. Czosnyka, J. D.Pickard, L. A. Steiner, “Principles of intracranial pressure monitoring and treatment," Handb. Clin. Neurol. 140, 67–89 (2017).

    [2] A. J. Schupper, A. E. Berndtson, A. Smith, Godat, T. W. Costantini, “Respect your elders: effects of ageing on intracranial pressure monitor use in traumatic brain injury," Trauma Surg. Acute Care Open 4(1), 1–4 (2019).

    [3] T. S. Wettervik, H. Engquist, T. Howells, E. Rostami, L. Hillered, P. Enblad, L. Anders, “Arterial lactate in traumatic brain injury — Relation to intracranial pressure dynamics, cerebral energy metabolism and clinical outcome," J. Crit. Care 60(3), 1–8 (2020).

    [4] S. Rot, M. Dweek, P. Gutowski, G. Leonie, U. Meier, J. Lemcke, “Comparative investigation of different telemetric methods for measuring intracranial pressure: A prospective pilot study," Fluids Barriers CNS 17(1), 63–64 (2017).

    [5] P. Pommer, “Telemetric intracranial pressure recording via a shunt system integrated sensor: A safety and feasibility study," J. Neurol. Surg. A: Cent. Eur. Neurosurg. 78(6), 572–575 (2017).

    [6] A. Dono, N. Husein, C. Ybarra, R. Hasbun, H. A. Choi, L. Y. Ballester, Y. Esquenazi, “Real-time intracranial pressure monitoring during high-dose methotrexate treatment for primary central nervous system lymphoma," Cancer Treat. Res. Commun. 25, 100234 (2020).

    [7] H. Li, H. Ma, B. Yang, C. Xu, L. Cao, Z. Dong, F. Fu, “Automatic evaluation of mannitol dehydration treatments on controlling intracranial pressure using electrical impedance tomography," IEEE Sens. J. 20(9), 4832–4839 (2020).

    [8] A. Giede-Jeppe, M. I. Sprügel, H. B. Huttner, M. Borutta, J. B. Kuramatsu, “Automated pupillometry identifies absence of intracranial pressure elevation in intracerebral hemorrhage patients," Neurocrit. Care 7, 1–7 (2020).

    [9] Y. Su, H. Jing, Y. Guo, J. Liu, T. Liu, W. Zhang, X. Wang, W. Wang, L. Guo, Z. He, “Application of noninvasive monitoring of intracranial pressure with flash visual evoked potential (FVEP) in treatment of posttraumatic acute diffuse brain swelling (PADBS) without hematoma," J. Mod. Electrophysiol. 3(1), 1–3 (2015).

    [10] L. Liu, W. Dong, X. Ji, L. Chen, L. Chen, “A new method of noninvasive brain-edema monitoring in stroke: Cerebral electrical impedance measurement," Neurol. Res. 28(1), 31–37 (2013).

    [11] C. Sun, W. Du, B. Wang, Z. Yao, J. Liu, J. Wang, W. Xie, T. Wu, Y. Fan, H. Yang, “Synthesis of a new deoxyglucose derivative modified near-infrared fluorescent probe for tumor diagnosis," Biochem. Biophys. Res. Commun. 488(2), 340–347 (2017).

    [12] S. Kevin, L. Koen, B. Thierry, S. D. Hert, A. Moerman, “Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test," J. Clin. Monitor. Comput. 31(6), 1151–1158 (2017).

    [13] W. Li, Y. Liu, H. Sun, Y. Pan, Z. Qian, “Monitoring reduced scattering coe±cient in pedicle screw insertion trajectory using near-infrared spectroscopy," Med. Biol. Eng. Comput. 54(10), 1533–1539 (2016).

    [14] S. Shiota, M. Nomura, “Short-term stress enhances individuals' adaptive behaviors: A near-infrared spectroscopy study,"" Neuroreport 31(8), 579–582 (2020).

    [15] J. B. Balardin, M. Zimeo, R. A. Furucho, T. Lucas, V. Patricia, B. Claudinei, J. R. Sato, “Imaging brain function with functional near-infrared spectroscopy in unconstrained environments," Front. Human Neurosci. 11(258), 1–5 (2017).

    [16] Y. Yun, K. Zhang, Z. Ling, H. Zong, R. Han, “Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults [Cochrane Protocol]," Cochrane Database Syst. Rev. 1(6), CD010947 (2018).

    [17] M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, Z. Chao, G. Yu, R. Choe, E. Maloney-Wilensky, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults," Neurocrit. Care 12(2), 173–180 (2010).

    [18] Y. Liu, H. Wang, Y. Liu, W. Li, Z. Qian, “Monte Carlo and phantom study in the brain edema models," J. Innov. Opt. Health Sci. 10(2), 1–11 (2016).

    [19] L. Dai, Z. Qian, K. Li, T. Yang, H. Wang, “In vivo detection of reduced scattering coe±cient of C6 glioma in rat brain tissue by near-infrared spectroscopy," J. Biomed. Opt. 13(4), 044003 (2008).

    [20] Y. Yang, P. Yu, X. Zhao, “Experimental acute brain edema in rabbits," Bull. Human Med. Coll. 8(2), 171–174 (1983).

    [21] K. H. Yeong, S. Kain, J. H. Jin, L. Unjoo, L. Hyosang, “Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models," Mol. Cells 40(8), 523–532 (2017).

    [22] Y. Zhou, X. Huang, T. Zhao, M. Qiao, X. Zhao, M. Zhao, L. Xu, Y. Zhao, L. Wu, K. Wu, “Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in rats," Brain Behav. Immun. 64, 266–275 (2017).

    [23] B. Rosengarten, M. Walberer, J. Allendoerfer, C. Mueller, N. Schwarz, G. Bachmann, T. Gerriets, “LPS-induced endotoxic shock does not cause early brain edema formation – An MRI study in rats," Inflamm. Res. 57(10), 479–483 (2008).

    [24] S. M. Schieke, P. Schroeder, J. Krutmann, “Cutaneous effects of infrared radiation: From clinical observations to molecular response mechanisms," Photodermatol. Photoimmunol. Photomed. 19, 228–234 (2003).

    [25] P. Schroeder, C. Pohl, C. Calles, C. Marks, S. Wild, J. Krutmann, “Cellular response to infrared radiation involves retrograde mitochondrial signaling," Free Radic. Biol. Med. 43, 128–135 (2007).

    [26] G. Li, J. Chen, S. Gu, J. Yang, Y. Chen, S. Zhao, J. Xu, Z. Bai, J. Ren, L. Xu, “A dual parameter synchronous monitoring system of brain edema based on the reflection and transmission characteristics of two-port test network," IEEE Access 7, 50839–50848 (2019).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research on the relationship between reduced scattering coe±cient and intracranial pressure in brain edema model[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2250002
    Download Citation