• Microelectronics
  • Vol. 51, Issue 2, 216 (2021)
PENG Xiong1, LIU Tao2、3, CHEN Kun2、3, and QIAO Zhe1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.200424 Cite this Article
    PENG Xiong, LIU Tao, CHEN Kun, QIAO Zhe. A Low Loss High Isolation Millimeter Wave SPDT Switch[J]. Microelectronics, 2021, 51(2): 216 Copy Citation Text show less
    References

    [1] LEE K H, CHOI S, KIM C Y. A 25-30-GHz asymmetric SPDT switch for 5G applications in 65-nm triple-well CMOS [J]. IEEE Microwave & Wireless Compon Lett, 2019, 29(6): 391-393.

    [2] MENG X Y, ZHENG Z P, ZHANG J Q, et al. A 28-GHz compact SPDT switch using LC-Based spiral transmission lines in 65-nm CMOS [C] ∥ IEEE A-SSCC. Macao, China. 2019: 79-80.

    [3] DESPOISSE T, DELTIMPLE N, GHIOTTO A, et al. Low-loss Ka-band SPDT switch design methodology for 5G applications in 65 nm CMOS SOI technology [C] ∥ IEEE 20th Top Meet SiRF. San Antonio, TI, USA. 2020: 5-8.

    [4] PENG N, ZHAO D X. A K-band low-loss high-isolation CMOS SPDT switch based on multi-tap inductor technique [C] ∥ IEEE Int Symp RFIT. Nanjing, China. 2019: 1-3.

    [5] UM Y, NGUYEN C. A millimeter-wave CMOS dual-bandpass T/R switch with dual-band LC network [J]. IEEE Microwave & Wireless Compon Lett, 2017, 27(7): 654-656.

    [6] CHANG H Y, CHAN C Y. A low loss high isolation DC-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS process [J]. IEEE Microwave & Wireless Compon Lett, 2010, 20(2): 82-84.

    [7] CARDOSO A S, SAHA P, CHAKRABORTY P S, et al. Low-loss, wideband SPDT switches and switched-line phase shifter in 180-nm RF CMOS on SOI technology [C] ∥ IEEE Radio & Wireless Sympo. Newport Beach, CA, USA. 2014: 199-201.

    [8] JANG S, KONG S, LEE H D, et al. 28 GHz 1.8 dB insertion loss SPDT switch with 24 dB isolation in 65 nm CMOS [C] ∥ 48th EuMC. Madrid, Spain. 2018: 835-838.

    PENG Xiong, LIU Tao, CHEN Kun, QIAO Zhe. A Low Loss High Isolation Millimeter Wave SPDT Switch[J]. Microelectronics, 2021, 51(2): 216
    Download Citation