• Photonics Research
  • Vol. 11, Issue 4, 533 (2023)
Yue Qin1, Jingxu Ma1, Di Zhao1, Jialin Cheng1..., Zhihui Yan1,2 and Xiaojun Jia1,2,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.481168 Cite this Article Set citation alerts
    Yue Qin, Jingxu Ma, Di Zhao, Jialin Cheng, Zhihui Yan, Xiaojun Jia, "Continuous variable quantum conference network with a Greenberger–Horne–Zeilinger entangled state," Photonics Res. 11, 533 (2023) Copy Citation Text show less
    References

    [1] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, J.-W. Pan. Satellite-to-ground quantum key distribution. Nature, 549, 43-47(2017).

    [2] M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, K. Peng. Deterministic quantum teleportation through fiber channels. Sci. Adv., 4, eaas9401(2018).

    [3] N. Wang, S. Du, W. Liu, X. Wang, K. Peng. Long-distance continuous-variable quantum key distribution with entangled states. Phys. Rev. Appl., 10, 064028(2018).

    [4] S. K. Joshi, D. Aktas, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, T. Scheidl, G. C. Lorenzo, Ž. Samec, L. Kling, A. Qiu, M. Razavi, M. Stipčević, J. G. Rarity, R. Ursin. A trusted node–free eight-user metropolitan quantum communication network. Sci. Adv., 6, eaba0959(2020).

    [5] H. V. Nguyen, Z. Babar, D. Alanis, P. Botsinis, D. Chandra, M. A. M. Izhar, S. X. Ng, L. Hanzo. Towards the quantum internet: generalised quantum network coding for large-scale quantum communication networks. IEEE Access, 5, 17288-17308(2017).

    [6] I. B. Djordjevic. Surface-codes-based quantum communication networks. Entropy, 22, 1059(2020).

    [7] J. Ribeiro, G. Murta, S. Wehner. Fully device-independent conference key agreement. Phys. Rev. A, 97, 022307(2018).

    [8] G. Murta, F. Grasselli, H. Kampermann, D. Bruß. Quantum conference key agreement: a review. Adv. Quantum Technol., 3, 2000025(2020).

    [9] F. Hahn, J. de Jong, A. Pappa. Anonymous quantum conference key agreement. PRX Quantum, 1, 020325(2020).

    [10] X.-Y. Cao, J. Gu, Y.-S. Lu, H.-L. Yin, Z.-B. Chen. Coherent one-way quantum conference key agreement based on twin field. New J. Phys., 23, 043002(2021).

    [11] M. Epping, H. Kampermann, C. Macchiavello, D. Bruß. Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys., 19, 093012(2017).

    [12] J.-L. Bai, Y.-M. Xie, Z. Li, H.-L. Yin, Z.-B. Chen. Post-matching quantum conference key agreement. Opt. Express, 30, 28865-28881(2022).

    [13] X.-Y. Cao, Y.-S. Lu, Z. Li, J. Gu, H.-L. Yin, Z.-B. Chen. High key rate quantum conference key agreement with unconditional security. IEEE Access, 9, 128870(2021).

    [14] S. Zhao, P. Zeng, W.-F. Cao, X.-Y. Xu, Y.-Z. Zhen, X. Ma, L. Li, N.-L. Liu, K. Chen. Phase-matching quantum cryptographic conferencing. Phys. Rev. Appl., 14, 024010(2020).

    [15] F. Grasselli, H. Kampermann, D. Bruß. Conference key agreement with single-photon interference. New J. Phys., 21, 123002(2019).

    [16] M. Epping, H. Kampermann, D. Bruß. Large-scale quantum networks based on graphs. New J. Phys., 18, 053036(2016).

    [17] F. Hahn, A. Pappa, J. Eisert. Quantum network routing and local complementation. npj Quantum Inf., 5, 76(2019).

    [18] A. Pirker, J. Wallnöfer, W. Dür. Modular architectures for quantum networks. New J. Phys., 20, 053054(2018).

    [19] V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, B. P. Lanyon. Light-matter entanglement over 50 km of optical fibre. npj Quantum Inf., 5, 72(2019).

    [20] A. Tchebotareva, S. Hermans, P. C. Humphreys, D. Voigt, P. J. Harmsma, L. K. Cheng, A. L. Verlaan, N. Dijkhuizen, W. D. Jong, A. Dreau. Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength. Phys. Rev. Lett., 123, 063601(2019).

    [21] S. K. Liao, W. Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J. G. Ren, W. Y. Liu. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett., 120, 030501(2018).

    [22] F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier. Quantum key distribution using Gaussian-modulated coherent states. Nature, 421, 238-241(2003).

    [23] A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, K. L. Ping. No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett., 95, 180503(2005).

    [24] J. Lodewyck, M. Bloch, R. Garciapatron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tuallebrouri, S. W. Mclaughlin. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A, 76, 042305(2007).

    [25] G.-J. Fan-Yuan, F. Lu, S. Wang, Z. Yin, D. He, Z. Zhou, J. Teng, W. Chen, G. Guo, Z. Han. Measurement device-independent quantum key distribution for nonstandalone networks. Photon. Res., 9, 1881-1891(2021).

    [26] C. Jiang, X. Hu, Z. Yu, X. Wang. Measurement-device-independent quantum key distribution protocol with phase post-selection. Photon. Res., 10, 1703-1711(2022).

    [27] F. G. Deng, G. L. Long, X. S. Liu. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A, 68, 113-114(2003).

    [28] F. G. Deng, G. L. Long. Secure direct communication with a quantum one-time pad. Phys. Rev. A, 69, 052319(2004).

    [29] C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long. Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A, 71, 044305(2005).

    [30] D. Pan, Z. Lin, J. Wu, H. Zhang, Z. Sun, D. Ruan, L. Yin, G. Long. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res., 8, 1522-1531(2020).

    [31] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70, 1895-1899(1993).

    [32] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S. L. Braunstein. Advances in quantum teleportation. Nat. Photonics, 9, 641-652(2015).

    [33] I. Marcikic, H. D. Riedmatten, W. Tittel, H. Zbinden, N. Gisin. Long-distance teleportation of qubits at telecommunication wavelengths. Nature, 421, 509-513(2003).

    [34] J. Yin, J. Ren, H. Lu, Y. Cao, H. Yong, Y. Wu, C. Liu, S. Liao, F. Zhou, Y. A. Jiang. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 488, 185-188(2012).

    [35] S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun., 11, 3875(2020).

    [36] Y. Wu, Q. Wang, L. Tian, X. Zhang, J. Wang, S. Shi, Y. Wang, Y. Zheng. Multi-channel multiplexing quantum teleportation based on the entangled sideband modes. Photon. Res., 10, 1909-1914(2022).

    [37] Y. Zhou, J. Yu, Z. Yan, X. Jia, J. Zhang, C. Xie, K. Peng. Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett., 121, 150502(2018).

    [38] M. Hillery, V. Bužek, A. Berthiaume. Quantum secret sharing. Phys. Rev. A, 59, 1829-1834(1999).

    [39] B. A. Bell, D. Markham, D. Herrera-Martí, A. Marin, M. S. Tame. Experimental demonstration of graph-state quantum secret sharing. Nat. Commun., 5, 5480(2014).

    [40] Y. G. Yang, Y. C. Wang, Y. L. Yang, X. B. Chen, D. Li, Y. H. Zhou, W. M. Shi. Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. China Phys. Mech. Astron., 64, 260321(2021).

    [41] X.-B. An, H.-W. Li, Z.-Q. Yin, M.-J. Hu, W. Huang, B.-J. Xu, S. Wang, W. Chen, G.-C. Guo, Z.-F. Han. Experimental three-party quantum random number generator based on dimension witness violation and weak measurement. Opt. Lett., 43, 3437-3440(2018).

    [42] J. Cheng, J. Qin, S. Liang, J. Li, Z. Yan, X. Jia, K. Peng. Mutually testing source-device-independent quantum random number generator. Photon. Res., 10, 646-652(2022).

    [43] Y. Zhao, C. Fung, B. Qi, C. Chen, H. K. Lo. Quantum hacking: experimental demonstration of time-shift attack against practical quantum key distribution systems. Phys. Rev. A, 78, 4702-4705(2007).

    [44] Y. Wang, C. Tian, Q. Su, M. Wang, X. Su. Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state. Sci. China Inf. Sci., 62, 72501(2019).

    [45] K. Chen, H.-K. Lo. Multi-partite quantum cryptographic protocols with noisy GHz states. arXiv(2004).

    [46] Z. Qin, M. Gessner, Z. Ren, X. Deng, D. Han, W. Li, X. Su, A. Smerzi, K. Peng. Characterizing the multipartite continuous-variable entanglement structure from squeezing coefficients and the Fisher information. npj Quantum Inf., 5, 3(2019).

    [47] S. Li, X. Pan, Y. Ren, H. Liu, S. Yu, J. Jing. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement. Phys. Rev. Lett., 124, 083605(2020).

    [48] K. Zhang, W. Wang, S. Liu, X. Pan, J. Du, Y. Lou, S. Yu, S. Lv, N. Treps, C. Fabre, J. Jing. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes. Phys. Rev. Lett., 124, 090501(2020).

    [49] X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, K. Peng. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett., 98, 070502(2007).

    [50] M. Proietti, J. Ho, F. Grasselli, P. Barrow, M. Malik, A. Fedrizzi. Experimental quantum conference key agreement. Sci. Adv., 7, eabe0395(2021).

    [51] P. Singkanipa, P. Kok. Quantum conference key agreement with photon loss. arXiv(2021).

    [52] F. Grasselli, H. Kampermann, D. Bruß. Finite-key effects in multipartite quantum key distribution protocols. New J. Phys., 20, 113014(2018).

    [53] J. Ribeiro, L. P. Thinh, J. Kaniewski, J. Helsen, S. Wehner. Device independence for two-party cryptography and position verification with memoryless devices. Phys. Rev. A, 97, 062307(2018).

    [54] Z. Zhang, R. Shi, Y. Guo. Multipartite continuous variable quantum conferencing network with entanglement in the middle. Appl. Sci., 8, 1312(2018).

    [55] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, U. L. Andersen. High-rate measurement-device-independent quantum cryptography. Nat. Photonics, 9, 397-402(2015).

    [56] R. Garcia-Patron, N. J. Cerf. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett., 97, 190503(2006).

    [57] Y. Zhou, X. Jia, F. Li, C. Xie, K. Peng. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal. Opt. Express, 23, 4952-4959(2015).

    [58] K. Chen, H.-K. Lo. Conference key agreement and quantum sharing of classical secrets with noisy GHz states. Proceedings International Symposium on Information Theory (ISIT), 1607-1611(2005).

    [59] J. Eisert, S. Scheel, M. B. Plenio. Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett., 89, 137903(2002).

    [60] J. Fiurášek. Gaussian transformations and distillation of entangled Gaussian states. Phys. Rev. Lett., 89, 137904(2002).

    [61] G. Spedalieri, C. Ottaviani, S. Pirandola. Covariance matrices under Bell-like detections. Open Syst. Inf. Dyn., 20, 1350011(2013).

    [62] M. Navascués, F. Grosshans, A. Acin. Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett., 97, 190502(2006).

    [63] S. Pirandola, S. L. Braunstein, S. Lloyd. Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett., 101, 200504(2008).

    [64] A. Leverrier, P. Grangier. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett., 102, 180504(2009).

    [65] U. L. Andersen, J. S. Neergaard-Nielsen, P. Van Loock, A. Furusawa. Hybrid discrete-and continuous-variable quantum information. Nat. Phys., 11, 713-719(2015).

    [66] Y. Wu, J. Zhou, X. Gong, Y. Guo, Z.-M. Zhang, G. He. Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A, 93, 022325(2016).

    [67] C. Weedbrook, S. Pirandola, R. Garca-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84, 621-669(2012).

    [68] M. A. Nielsen, I. L. Chuang. Quantum computation and quantum information. Phys Today, 54, 60(2001).

    [69] R. Simon, S. Chaturvedi, V. Srinivasan. Congruences and canonical forms for a positive matrix: application to the Schweinler-Wigner extremum principle. J. Math. Phys., 40, 3632-3642(1999).

    [70] R. Garcia-Patron Sanchez. Quantum information with optical continuous variables: from Bell tests to key distribution(2007).

    [71] M. M. Wolf, G. Giedke, J. I. Cirac. Extremality of Gaussian quantum states. Phys. Rev. Lett., 96, 080502(2006).

    Yue Qin, Jingxu Ma, Di Zhao, Jialin Cheng, Zhihui Yan, Xiaojun Jia, "Continuous variable quantum conference network with a Greenberger–Horne–Zeilinger entangled state," Photonics Res. 11, 533 (2023)
    Download Citation