• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0527002 (2022)
Akbar Hamutjan, Arapat Ablimit, Fan Yang, Jinfeng Zhang, and Ahmad Abliz*
Author Affiliations
  • School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi , Xinjiang 830054, China
  • show less
    DOI: 10.3788/LOP202259.0527002 Cite this Article Set citation alerts
    Akbar Hamutjan, Arapat Ablimit, Fan Yang, Jinfeng Zhang, Ahmad Abliz. Effect of Non-Markovian Hybrid Bath on Quantum Entanglement and Quantum Dense Coding in Heisenberg XYZ Spin Chain Model[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0527002 Copy Citation Text show less
    References

    [1] Hu X M, Huang C X, Sheng Y B et al. Long-distance entanglement purification for quantum communication[J]. Physical Review Letters, 126, 010503(2021).

    [2] Mattle K, Weinfurter H, Kwiat P G et al. Dense coding in experimental quantum communication[J]. Physical Review Letters, 76, 4656-4659(1996).

    [3] Zhang J F, Xie J Y, Deng Z W et al. Quantum dense coding scheme using Bell state superposition state and its NMR implementation[J]. Science in China (Series G) Physical, Mechanics & Astronomy, 34, 502-512(2004).

    [4] Feynman R P, Vernon F L. The theory of a general quantum system interacting with a linear dissipative system[J]. Annals of Physics, 24, 118-173(1963).

    [5] An J H, Zhang W M. Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels[J]. Physical Review A, 76, 042127(2007).

    [6] Hu B L, Paz J P, Zhang Y. Quantum Brownian motion in a general environment. II. nonlinear coupling and perturbative approach[J]. Physical Review D, Particles and Fields, 47, 1576-1594(1993).

    [7] Calzetta E A, Hu B L B[M]. Nonequilibrium quantum field theory(2008).

    [8] Gisin N, Percival I C. The quantum-state diffusion model applied to open systems[J]. Journal of Physics A: Mathematical and General, 25, 5677-5691(1992).

    [9] Yu T, Diósi L, Gisin N et al. Non-Markovian quantum-state diffusion: perturbation approach[J]. Physical Review A, 60, 91-103(1999).

    [10] Strunz W T, Yu T. Convolutionless non-Markovian master equations and quantum trajectories: Brownian motion[J]. Physical Review A, 69, 052115(2004).

    [11] Büttiker M. Scattering theory of current and intensity noise correlations in conductors and wave guides[J]. Physical Review B, 46, 12485-12507(1992).

    [12] Meir Y, Wingreen N S, Lee P A. Transport through a strongly interacting electron system: theory of periodic conductance oscillations[J]. Physical Review Letters, 66, 3048-3051(1991).

    [13] Tu M W Y, Zhang W M. Non-Markovian decoherence theory for a double-dot charge qubit[J]. Physical Review B, 78, 235311(2008).

    [14] Zhang W M, Lo P Y, Xiong H N et al. General non-Markovian dynamics of open quantum systems[J]. Physical Review Letters, 109, 170402(2012).

    [15] Zhao X Y, Jing J, Corn B et al. Dynamics of interacting qubits coupled to a common bath: non-Markovian quantum-state-diffusion approach[J]. Physical Review A, 84, 032101(2011).

    [16] Chen Y S, You J Q, Yu T. Exact non-Markovian master equations for multiple qubit systems: quantum-trajectory approach[J]. Physical Review A, 90, 052104(2014).

    [17] Jing J, Yu T, Lam C H et al. Control relaxation via dephasing: a quantum-state-diffusion study[J]. Physical Review A, 97, 012104(2018).

    [18] Carmichael H[M]. An open systems approach to quantum optics(1993).

    [19] Dalibard J, Castin Y, Mølmer K. Wave-function approach to dissipative processes in quantum optics[J]. Physical Review Letters, 68, 580-583(1992).

    [20] Gao X, Eisfeld A. Charge and energy transfer in large molecular assemblies: quantum state diffusion with an adaptive basis[J]. The Journal of Chemical Physics, 150, 234115(2019).

    [21] Plenio M B, Knight P L. The quantum-jump approach to dissipative dynamics in quantum optics[J]. Reviews of Modern Physics, 70, 101-144(1998).

    [22] Diósi L, Strunz W T. The non-Markovian stochastic Schrödinger equation for open systems[J]. Physics Letters A, 235, 569-573(1997).

    [23] Cheng J. Theoretical research of entanglement dynamics in open quantum systems[D], 4-7(2016).

    [24] Hu X, Sousa R D, Sarma S D[M]. Foundations of quantum mechanics in the light of new technology(2002).

    [25] Ritschel G, Suess D, Möbius S et al. Non-Markovian quantum state diffusion for temperature-dependent linear spectra of light harvesting aggregates[J]. The Journal of Chemical Physics, 142, 034115(2015).

    [26] Lambert N, Nori F. Detecting quantum-coherent nanomechanical oscillations using the current-noise spectrum of a double quantum dot[J]. Physical Review B, 78, 214302(2008).

    [27] Gardiner C W, Zoller P[M]. Quantum noise(2004).

    [28] Simine L, Segal D. Path-integral simulations with fermionic and bosonic reservoirs: transport and dissipation in molecular electronic junctions[J]. The Journal of Chemical Physics, 138, 214111(2013).

    [29] Mühlbacher L, Rabani E. Real-time path integral approach to nonequilibrium many-body quantum systems[J]. Physical Review Letters, 100, 176403(2008).

    [30] Simine L, Segal D. Vibrational cooling, heating, and instability in molecular conducting junctions: full counting statistics analysis[J]. Physical Chemistry Chemical Physics, 14, 13820-13834(2012).

    [31] Zhao X Y, Shi W F, You J Q et al. Non-Markovian dynamics of quantum open systems embedded in a hybrid environment[J]. Annals of Physics, 381, 121-136(2017).

    [32] Yang F, Ablimit A, Abliz A. Influences of Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic field on entanglement of spin system in non-Markov environment[J]. Laser & Optoelectronics Progress, 58, 0727003(2021).

    [33] Azizigul A, Bai H T, Aynisa Y et al. Evolution of geometric quantum discord of two-bit Heisenberg spin chain system in non-Markovian environment[J/OL]. Laser & Optoelectronics Progress, 1-14. http://kns.cnki.net/kcms/detail/31.1690.tn.20210802.1730.062.html

    [34] Diósi L, Gisin N, Strunz W T. Non-Markovian quantum state diffusion[J]. Physical Review A, 58, 1699-1712(1998).

    [35] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 69, 2881-2884(1992).

    [36] Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement[J]. Reviews of Modern Physics, 81, 865-942(2009).

    [37] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895-1899(1993).

    [38] Nielsen M A, Chuang I L[M]. Quantum computation and quantum information: 10th anniversary edition(2010).

    [39] Lo H K, Spiller T, Popescu S[M]. Introduction to quantum computation and information(1998).

    [40] Bennett C H, DiVincenzo D P. Quantum information and computation[J]. Nature, 404, 247-255(2000).

    [41] Galindo A, Martín-Delgado M A. Information and computation: classical and quantum aspects[J]. Reviews of Modern Physics, 74, 347-423(2002).

    [42] Zhang Y D[M]. Principles of quantum information physics(2005).

    [43] Arapat A, Yang F, Dildar H et al. Influence of non-Markovian bosonic environment on the quantum teleportation of a single three-level atom[J]. Laser & Optoelectronics Progress, 58, 2127002(2021).

    [44] Zhang G Q. Studies of quantum correlation and quantum phase transition in spin-chain and open systems[D], 23-24(2019).

    Akbar Hamutjan, Arapat Ablimit, Fan Yang, Jinfeng Zhang, Ahmad Abliz. Effect of Non-Markovian Hybrid Bath on Quantum Entanglement and Quantum Dense Coding in Heisenberg XYZ Spin Chain Model[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0527002
    Download Citation