• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111417 (2020)
Kun Du1, Xiaowei Li1、*, Bingdong Yang1, Chao Zhang1, and Bo Xia2
Author Affiliations
  • 1Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 2College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
  • show less
    DOI: 10.3788/LOP57.111417 Cite this Article Set citation alerts
    Kun Du, Xiaowei Li, Bingdong Yang, Chao Zhang, Bo Xia. Research Progress of Femtosecond Laser Microhole Drilling on Non-Metallic Materials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111417 Copy Citation Text show less
    References

    [1] Zhang X Q, Xing S L, Liu L et al. Trepanning of supper-alloy with thermal barrier coating using femtosecond laser[J]. Chinese Journal of Lasers, 44, 0102013(2017).

    [2] Zhang Q, He B, Tian D P et al. Development of gas film holes machining on turbine blades with thermal barrier coating by femtosecond laser[J]. Aeronautical Science & Technology, 29, 9-14(2018).

    [3] Zhang C C, Xiong X H, Dai P D et al. Effect of parameters on the femtosecond laser process of cooling holes in superalloy DD6[J]. Semiconductor Optoelectronics, 39, 440-443(2018).

    [4] Yang M W, Wang D N, Liao C R. Micro-holes integrated fiber Bragg grating for simultaneous and independent refractive index and temperature measurement. [C]∥Asia Communications and Photonics Conference and Exhibition, December 8-12, 2010. Shanghai, China. New York: IEEE, 649-650(2010).

    [5] Jiang L, Zhao L J, Wang S M et al. Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment[J]. Optics Express, 19, 17591-17598(2011).

    [6] Liu Z X, Li Y P, Li J et al. Temperature compensated fiber optic microfluidic sensor based on the femtosecond laser drilling technique[J]. Laser & Optoelectronics Progress, 56, 170169(2019).

    [7] Dong H Y, Liu C N, Sun S M et al. Optical fiber high-temperature and refractive index sensor fabricated by femtosecond laser[J]. Laser & Optoelectronics Progress, 56, 170633(2019).

    [8] Jiang Y, Jiang Y, Zhang L C et al. Non-diaphragm fiber gas pressure sensor based on femtosecond laser machining[J]. Laser & Optoelectronics Progress, 56, 100601(2019).

    [9] Wanunu M. Nanopores:a journey towards DNA sequencing[J]. Physics of Life Reviews, 9, 125-158(2012).

    [10] Yeon J H, Park J K. Drug permeability assay using microhole-trapped cells in a microfluidic device[J]. Analytical Chemistry, 81, 1944-1951(2009).

    [11] Kurz C M, Maurer A, Thees K et al. Impedance-controlled cell entrapment using microhole-array chips allows the isolation and identification of single, highly productive cells[J]. Sensors and Actuators B: Chemical, 158, 345-352(2011).

    [12] Ran H L, Peng H, Huang J[J]. Research on TSV technology in 3D packaging microsystem Electronics Quality, 2018, 111-115.

    [13] Motoyoshi M. Through-silicon via (TSV)[J]. Proceedings of the IEEE, 97, 43-48(2009).

    [14] Xia B, Jiang L, Wang S M et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 40, 0201001(2013).

    [15] Xie B C, Cui H X, Zhang Y et al. Current research of micro electrical discharge machining of micro-hole[J]. Journal of Harbin University of Science and Technology, 23, 25-30(2018).

    [16] Zhu Y D. Analysis of small diameter deep hole machining and micropore machining characteristics in electrical discharge machining[J]. China Metalforming Equipment & Manufacturing Technology, 53, 100-103(2018).

    [17] Wang Y Y, Jia C, Xu M et al. The prospect of micro hole processing technology[J]. Hydraulics Pneumatics & Seals, 38, 6-8(2018).

    [18] Jia J X. Research on the machining of micro-holes by electrolyte stream drilling based on sodium nitrate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics(2011).

    [19] Jiao Y, He B, Li P et al. Development of micro-holes machining with high-aspect ratio[J]. Aeronautical Science & Technology, 29, 1-7(2018).

    [20] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [21] Perry M D, Stuart B C, Banks P S et al. Ultrashort-pulse laser machining of dielectric materials[J]. Journal of Applied Physics, 85, 6803-6810(1999).

    [22] Deng Y, Guo Z N, Lian H S et al[J]. Experimental study on laser machining hole in water Modern Manufacturing Engineering, 2016, 1-5.

    [23] Hu L Y, Jin W F, Li J L et al. Effect of nanosecond laser pulse width on melt volume[J]. Optics & Optoelectronic Technology, 17, 46-52(2019).

    [24] Zou Z Q, Li J, Hu L Y. Diameter changing regularity with the laser parameters of nanosecond laser drilling[J]. Optics & Optoelectronic Technology, 15, 58-61(2017).

    [25] Sanner N, Utéza O, Bussiere B et al. Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics[J]. Applied Physics A, 94, 889-897(2009).

    [26] Joglekar A P, Liu H, Spooner G J et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining[J]. Applied Physics B, 77, 25-30(2003).

    [27] Le Harzic R, Huot N, Audouard E et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Applied Physics Letters, 80, 3886-3888(2002).

    [28] Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 14, 2716-2722(1997).

    [29] Kautek W, Krüger J, Lenzner M et al. Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps[J]. Applied Physics Letters, 69, 3146-3148(1996).

    [30] Wang Z. High-throughput microchannels fabrication in fused silica by temporally shaped femtosecond laser Bessel beam[D]. Beijing: Beijing Institute of Technology, 15-20(2017).

    [31] Liu P J. Temporally shaped femtosecond laser ablation of nonmetallic materials based on electron dynamics control[D]. Beijing: Beijing Institute of Technology, 3-5(2016).

    [32] Zhang K H. Mechanisms of micro/nano processing with temporally shaped femtosecond irradiation based on electron dynamics control[D]. Beijing: Beijing Institute of Technology, 2-6(2015).

    [33] Varel H, Ashkenasi D, Rosenfeld A et al. Micromachining of quartz with ultrashort laser pulses[J]. Applied Physics A, 65, 367-373(1997).

    [34] Shah L, Tawney J, Richardson M et al. Femtosecond laser deep hole drilling of silicate glasses in air[J]. Applied Surface Science, 183, 151-164(2001).

    [35] Kononenko T V, Klimentov S M, Garnov S V et al. Hole formation process in laser deep drilling with short and ultrashort pulses. [C]∥Second International Symposium on Laser Precision Microfabrication, 108-112(2002).

    [36] Ashcom J B, Gattass R R, Schaffer C B et al. Numerical aperture dependence of damageand supercontinuum generation from femtosecond laser pulses in bulk fused silica[J]. Journal of the Optical Society of America B, 23, 2317-2322(2006).

    [37] Shah L, Tawney J, Richardson M et al. Self-focusing during femtosecond micromachining of silicate glasses[J]. IEEE Journal of Quantum Electronics, 40, 57-68(2004).

    [38] Méndez C, Roso L. Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses[J]. Optics Express, 14, 1329-1338(2006).

    [39] Méndez C, Roso L et al. Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments[J]. Journal of Physics D, 38, 2764-2768(2005).

    [40] Tao S, Wu B X, Lei S T. Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining[J]. Journal of Applied Physics, 109, 123506(2011).

    [41] Kongsuwan P, Wang H L, Lawrence Yao Y. Single step channeling in glass interior by femtosecond laser[J]. Journal of Applied Physics, 112, 023114(2012).

    [42] Wei J, Zhang B, Liu H et al. Time-resolved shadowgraphic imaging of femtosecond laser ablated micro-holes in silica glass[J]. Chinese Journal of Lasers, 46, 0508020(2019).

    [43] Esser D, Rezaei S, Li J Z et al. Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses[J]. Optics Express, 19, 25632-25642(2011).

    [44] Xia B, Jiang L, Li X W et al. Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling[J]. Optics Express, 23, 27853-27864(2015).

    [45] Jiang L, Tsai H L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. International Journal of Heat and Mass Transfer, 48, 487-499(2005).

    [46] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 100, 023116(2006).

    [47] Jiang L, Tsai H L. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics[J]. Journal of Applied Physics, 104, 093101(2008).

    [48] Jiang L, Tsai H L. Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains[J]. Journal of Heat Transfer, 128, 926-933(2006).

    [49] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics[J]. Journal of Physics D, 37, 1492-1496(2004).

    [50] Jiang L, Fang J Q, Cao Q et al. Femtosecond laser high-efficiency drilling of high-aspect-ratio microholes based on free-electron-density adjustments[J]. Applied Optics, 53, 7290-7295(2014).

    [51] Du K, Jiang L, Li X W et al. Chemical etching mechanisms and crater morphologies pre-irradiated by temporally decreasing pulse trains of femtosecond laser[J]. Applied Surface Science, 469, 44-49(2019).

    [52] Zhao L L, Wang F, Jiang L et al. Femtosecond Bessel-beam-assisted high-aspect-ratio microgroove fabrication in fused silica[J]. Chinese Optics Letters, 13, 041405(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ150416000074pVrYu1

    [53] Wang A D, Jiang L, Li X W et al. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films[J]. Optics & Laser Technology, 101, 298-303(2018).

    [54] Jiang L, Liu P J, Yan X L et al. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains[J]. Optics Letters, 37, 2781-2783(2012).

    [55] Liu P J, Jiang L, Hu J et al. Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass[J]. Optics Letters, 38, 4613-4616(2013).

    [56] Wang Z, Jiang L, Li X W et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching[J]. Optics Letters, 43, 98-101(2018).

    [57] Yan X, Jiang L, Li X et al. Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication[J]. Optics Letters, 39, 5240-5243(2014).

    [58] Zhao M J, Hu J, Jiang L et al. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control[J]. Scientific Reports, 5, 13202(2015).

    [59] Stoian R, Boyle M, Thoss A et al. Laser ablation of dielectrics with temporally shaped femtosecond pulses[J]. Applied Physics Letters, 80, 353-355(2002).

    [60] Fang J Q. Femtosecond laser high efficient and selective processing based on electron dynamics control[D]. Beijing: Beijing Institute of Technology, 95-96(2015).

    [61] Götte N, Winkler T, Meinl T et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics[J]. Optica, 3, 389-395(2016).

    [62] Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).

    [63] Zhao W W. Femtosecond laser Bessel beams drilling of micro-holes[D]. Beijing: Beijing Institute of Technology, 31-35(2015).

    [64] Zhao W W, Li X W, Xia B et al. Single-pulse femtosecond laser Bessel beams drilling of high-aspect-ratio microholes based on electron dynamics control[J]. Proceedings of SPIE, 9296, 92960Q(2014).

    [65] Yao Z L, Jiang L, Li X W et al. Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling[J]. Optics Express, 26, 21960-21968(2018).

    [66] Bhuyan M K, Courvoisier F, Lacourt P A et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Applied Physics Letters, 97, 081102(2010).

    [67] Bhuyan M K, Velpula P K, Colombier J P et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Applied Physics Letters, 104, 021107(2014).

    [68] Juodkazis S, Watanabe M et al. Femtosecond laser-assisted three-dimensional microfabrication in silica[J]. Optics Letters, 26, 277-279(2001).

    [69] Kiyama S, Matsuo S, Hashimoto S et al. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates[J]. The Journal of Physical Chemistry C, 113, 11560-11566(2009).

    [70] Venturini F, Navarrini W, Resnati G et al. Selective iterative etching of fused silica with gaseous hydrofluoric acid[J]. The Journal of Physical Chemistry C, 114, 18712-18716(2010).

    [71] He F, Cheng Y, Xu Z Z et al. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser[J]. Optics Letters, 35, 282-284(2010).

    [72] Luo S W, Chang T L, Tsai H Y. Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process[J]. Optics and Lasers in Engineering, 50, 220-225(2012).

    [73] Chen F, Deng Z F, Yang Q et al. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass[J]. Optics Letters, 39, 606(2014).

    [74] Ho S, Haque M, Herman P R et al. Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica[J]. Optics Letters, 37, 1682-1684(2012).

    [75] Venturini F, Vazquez R M, Osellame R et al. Maskless, fast and highly selective etching of fused silica with gaseous fluorine and gaseous hydrogen fluoride[J]. Journal of Micromechanics and Microengineering, 24, 025004(2013).

    [76] Lenssen B, Bellouard Y. Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching[J]. Applied Physics Letters, 101, 103503(2012).

    [77] Vishnubhatla K C, Bellini N, Ramponi R et al. Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching[J]. Optics Express, 17, 8685-8695(2009).

    [78] Venturini F, Sansotera M, Vazquez R M et al. Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching[J]. Micromachines, 3, 604-614(2012).

    [79] Cerullo G, Osellame R, Taccheo S et al. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing[J]. Optics Letters, 27, 1938-1940(2002).

    [80] Osellame R, Taccheo S, Marangoni M et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. Journal of the Optical Society of America B, 20, 1559-1567(2003).

    [81] Cheng Y, Sugioka K, Midorikawa K et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 28, 55-57(2003).

    [82] Ams M, Marshall G D, Spence D J et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses[J]. Optics Express, 13, 5676-5681(2005).

    [83] Hnatovsky C, Taylor R S, Simova E et al. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching[J]. Applied Physics A, 84, 47-61(2006).

    [84] Juodkazis S, Okuno H, Kujime N et al. Hole drilling in stainless steel and silicon by femtosecond pulses at low pressure[J]. Applied Physics A, 79, 1555-1559(2004).

    [85] Bliss D E, Adams D P, Cameron S M et al. Laser machining with ultrashort pulses: effects of pulse-width, frequency and energy[J]. MRS Proceedings, 546, 81(1998).

    [86] Xia B, Jiang L, Li X W et al. High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum[J]. Applied Physics A, 119, 61-68(2015).

    [87] Watanabe W, Li Y, Itoh K. Ultrafast laser micro-processing of transparent material[J]. Optics & Laser Technology, 78, 52-61(2016).

    [88] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004).

    [89] Li Y, Qu S L. Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array[J]. Optics Letters, 36, 4236-4238(2011).

    [90] Zhu S J, Zhang Z Y, Chu S L et al. Research and application of massive micropores water-assisted picosecond laser processing technology[J]. Chinese Journal of Lasers, 47, 0302002(2020).

    [91] Zhang Z Y, Feng Q Y, Zhou J Z et al. Analysis of laser thermal-mechanical effect on morphology of electrochemical etching on various materials[J]. Chinese Journal of Lasers, 42, 0502002(2015).

    [92] Guo W Y, Wang M C, Zhang X B. Recast layer formed by laser drilling of Ni-based superalloys and progress on its control[J]. Laser Journal, 24, 1-3(2003).

    [93] Li Y, Itoh K, Watanabe W et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 26, 1912-1914(2001).

    [94] Liao Y, Ju Y F, Zhang L et al. Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing[J]. Optics Letters, 35, 3225-3227(2010).

    [95] Day D, Gu M. Microchannel fabrication in PMMA based on localized heating by nanojoule high repetitionrate femtosecond pulses[J]. Optics Express, 13, 5939-5946(2005).

    [96] Jiao L S, Moon S K. Ng E Y K, et al. Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon[J]. Applied Physics Letters, 104, 181902(2014).

    [97] Zhang F, Dong X R, Yin K et al. Temperature effects on the geometry during the formation of micro-holes fabricated by femtosecond laser in PMMA[J]. Optics & Laser Technology, 100, 256-260(2018).

    [98] Wang G B[M]. Overview nano-manufacturing frontiers, 25-29(2009).

    [99] Tan Y X, Chu W, Wang P et al. Water-assisted laser drilling of high-aspect-ratio 3D microchannels in glass with spatiotemporally focused femtosecond laser pulses[J]. Optical Materials Express, 9, 1971-1978(2019).

    [100] Wang R J, Dong X, Wang K D et al. Two-step approach to improving the quality of laser micro-hole drilling on thermal barrier coated nickel base alloys[J]. Optics and Lasers in Engineering, 121, 406-415(2019).

    [101] Xiong W, Zhou Y S, He X N et al. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation[J]. Light: Science & Applications, 1, e6(2012).

    [102] Kudryashov S I, Mourou G, Joglekar A et al. Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces[J]. Applied Physics Letters, 91, 141111(2007).

    Kun Du, Xiaowei Li, Bingdong Yang, Chao Zhang, Bo Xia. Research Progress of Femtosecond Laser Microhole Drilling on Non-Metallic Materials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111417
    Download Citation