• Laser & Optoelectronics Progress
  • Vol. 57, Issue 8, 081103 (2020)
Huimin Ma*, Jun Jiao, Yan Qiao, Haiqiu Liu, and Yanwei Gao
Author Affiliations
  • College of Information and Computer, Anhui Agriculture University, Hefei, Anhui 230031, China
  • show less
    DOI: 10.3788/LOP57.081103 Cite this Article Set citation alerts
    Huimin Ma, Jun Jiao, Yan Qiao, Haiqiu Liu, Yanwei Gao. Wavefront Restoration Method Based on Light Intensity Image Deep Learning[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081103 Copy Citation Text show less
    References

    [1] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [2] Misell L D . A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D: Applied Physics, 6, L6-L9(1973).

    [3] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 829-832(1982).

    [4] Yang H Z, Gong C L. Phase retrieval for a kind of wavefront sensor based on pupil phase diversity[J]. Acta Optica Sinica, 31, 1112002(2011).

    [5] Angel J R P, Wizinowich P, Lloyd-Hart M et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 348, 221-224(1990).

    [6] Sandler D G, Barrett T K, Palmer D A et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 351, 300-302(1991).

    [7] Barrett T K, Sandler D G. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 32, 1720-1727(1993).

    [8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. [C]∥Advances in Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada, United States. Canada: NIPS, 1097-1105(2012).

    [9] Simonyan K. -04-10)[2019-09-01]. https:∥arxiv.xilesou., top/abs/1409, 1556(2015).

    [10] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 15523970(2015).

    [11] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [12] Long X, Su H S, Liu G H et al. A face recognition algorithm based on angular distance loss function and convolutional neural network[J]. Laser & Optoelectronics Progress, 55, 121505(2018).

    [13] Xie J R, Li F M, Wei H et al. Infrared target simulation method based on generative adversarial neural networks[J]. Acta Optica Sinica, 39, 0311002(2019).

    [14] Zan B F, Kong J, Jiang M. Human action recognition based on discriminative collaborative representation classifier[J]. Laser & Optoelectronics Progress, 55, 011010(2018).

    [15] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks. [C]∥2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26-31, 2013, Vancouver, BC, Canada. New York: IEEE, 6645-6649(2013).

    [16] Nguyen T, Bui V, Lam V et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [17] Fei X, Zhao J L, Zhao H X et al. Deblurring adaptive optics retinal images using deep convolutional neural networks[J]. Biomedical Optics Express, 8, 5675-5687(2017).

    [18] Zhang G, Guan T, Shen Z Y et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 26, 19388-19405(2018).

    [19] Park S R, Cattell L, Nichols J M et al. De-multiplexing vortex modes in optical communications using transport-based pattern recognition[J]. Optics Express, 26, 4004-4022(2018).

    [20] Lohani S, Glasser R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 43, 2611-2614(2018).

    [21] Lohani S, Knutson E M. O'Donnell M, et al. On the use of deep neural networks in optical communications[J]. Applied Optics, 57, 4180-4190(2018).

    [22] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [23] Yang P, Ao M W, Liu Y et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optics Express, 15, 17051-17062(2007).

    [24] [M]. Deep learning, 100-128(2017).

         Goodfellow I, Goodfellow I, Bengio Y, Bengio Y, Courville A, Courville A[M]. 深度学习, 100-128(2017).

    [25] Roddier N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 29, 1174-1180(1990).

    [26] Innes M. Flux: elegant machine learning with Julia[J]. Journal of Open Source Software, 3, 602(2018).

    Huimin Ma, Jun Jiao, Yan Qiao, Haiqiu Liu, Yanwei Gao. Wavefront Restoration Method Based on Light Intensity Image Deep Learning[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081103
    Download Citation