• Laser & Optoelectronics Progress
  • Vol. 59, Issue 20, 2011001 (2022)
Chenliang Chang1,2,*, Bo Dai1,2, Jun Xia3, Dawei Zhang1,2,**, and Songlin Zhuang1,2
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optics System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
  • show less
    DOI: 10.3788/LOP202259.2011001 Cite this Article Set citation alerts
    Chenliang Chang, Bo Dai, Jun Xia, Dawei Zhang, Songlin Zhuang. Review of Holographic Near-Eye Displays for Visual Comfort[J]. Laser & Optoelectronics Progress, 2022, 59(20): 2011001 Copy Citation Text show less
    References

    [1] Park J H, Lee B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 3, 114-127(2022).

    [2] Wang Y Q, Liu W Q, Meng X X et al. Development of an immersive virtual reality head-mounted display with high performance[J]. Applied Optics, 55, 6969-6977(2016).

    [3] Kersten D, Legge G E. Convergence accommodation[J]. Journal of the Optical Society of America, 73, 332-338(1983).

    [4] Akeley K, Watt S J, Girshick A R et al. A stereo display prototype with multiple focal distances[J]. ACM Transactions on Graphics, 23, 804(2004).

    [5] Cui W, Gao L. Optical mapping near-eye three-dimensional display with correct focus cues[J]. Optics Letters, 42, 2475-2478(2017).

    [6] Lanman D, Luebke D. Near-eye light field displays[J]. ACM Transactions on Graphics, 32, 220(2013).

    [7] Huang F C, Chen K, Wetzstein G. The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues[J]. ACM Transactions on Graphics, 34, 60(2015).

    [8] Geng J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 5, 456-535(2013).

    [9] Wakunami K, Hsieh P Y, Oi R et al. Projection-type see-through holographic three-dimensional display[J]. Nature Communications, 7, 12954(2016).

    [10] Goldstein E B, Brockmole J[M]. Sensation and Perception(2016).

    [11] Koulieris G A, Akşit K, Stengel M et al. Near-eye display and tracking technologies for virtual and augmented reality[J]. Computer Graphics Forum, 38, 493-519(2019).

    [12] Kress B C[M]. Optical architectures for augmented-, virtual-, and mixed-reality headsets(2020).

    [13] Kress B, Starner T. A review of head-mounted displays (HMD) technologies and applications for consumer electronics[J]. Proceedings of SPIE, 8720, 87200A(2013).

    [14] Jeong J, Lee J, Yoo C et al. Holographically customized optical combiner for eye-box extended near-eye display[J]. Optics Express, 27, 38006-38018(2019).

    [15] Duan X H, Liu J, Shi X L et al. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box[J]. Optics Express, 28, 31316-31329(2020).

    [16] Park J H, Kim S B. Optical see-through holographic near-eye-display with eyebox steering and depth of field control[J]. Optics Express, 26, 27076-27088(2018).

    [17] Choi M H, Ju Y G, Park J H. Holographic near-eye display with continuously expanded eyebox using two-dimensional replication and angular spectrum wrapping[J]. Optics Express, 28, 533-547(2020).

    [18] Liu Y Z, Pang X N, Jiang S J et al. Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling[J]. Optics Express, 21, 12068-12076(2013).

    [19] Jang C, Bang K, Li G et al. Holographic near-eye display with expanded eye-box[J]. ACM Transactions on Graphics, 37, 195(2018).

    [20] Su Y F, Cai Z J, Zou W L et al. Viewing angle enlargement in holographic augmented reality using an off-axis holographic lens[J]. Optik, 172, 462-469(2018).

    [21] Chen Z D, sang X Z, Lin Q J et al. A see-through holographic head-mounted display with the large viewing angle[J]. Optics Communications, 384, 125-129(2017).

    [22] Yaraş F, Kang H, Onural L. Circular holographic video display system[J]. Optics Express, 19, 9147-9156(2011).

    [23] Fukaya N, Maeno K, Nishikawa O et al. Expansion of the image size and viewing zone in holographic display using liquid crystal devices[J]. Proceedings of SPIE, 2406, 283-289(1995).

    [24] Kozacki T, Kujawińska M, Finke G et al. Extended viewing angle holographic display system with tilted SLMs in a circular configuration[J]. Applied Optics, 51, 1771-1780(2012).

    [25] Gao H Y, Xu F, Liu J C et al. Holographic three-dimensional virtual reality and augmented reality display based on 4K-spatial light modulators[J]. Applied Sciences, 9, 1182(2019).

    [26] Sasaki H, Yamamoto K, Wakunami K et al. Large size three-dimensional video by electronic holography using multiple spatial light modulators[J]. Scientific Reports, 4, 6177(2014).

    [27] Hahn J, Kim H, Lim Y et al. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators[J]. Optics Express, 16, 12372-12386(2008).

    [28] Li J, Smithwick Q, Chu D P. Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner[J]. Optics Express, 26, 17459-17476(2018).

    [29] Lum Z M A, Liang X N, Pan Y C et al. Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling[J]. Optical Engineering, 52, 015802(2013).

    [30] Li J, Smithwick Q, Chu D P. Scalable coarse integral holographic video display with integrated spatial image tiling[J]. Optics Express, 28, 9899-9912(2020).

    [31] Li G, Jeong J, Lee D et al. Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element[J]. Optics Express, 23, 33170-33183(2015).

    [32] Lee B, Yoo D, Jeong J et al. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing[J]. Optics Letters, 45, 2148-2151(2020).

    [33] Li J, Smithwick Q, Chu D P. Holobricks: modular coarse integral holographic displays[J]. Light: Science & Applications, 11, 57(2022).

    [34] Li Y L, Li N N, Wang D et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size[J]. Light: Science & Applications, 11, 188(2022).

    [35] Hu Y Q, Luo X H, Chen Y Q et al. 3D-integrated metasurfaces for full-colour holography[J]. Light: Science & Applications, 8, 86(2019).

    [36] Huang L L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications[J]. Nanophotonics, 7, 1169-1190(2018).

    [37] Jiang Q, Jin G F, Cao L C. When metasurface meets hologram: principle and advances[J]. Advances in Optics and Photonics, 11, 518-576(2019).

    [38] Kuo G, Waller L, Ng R et al. High resolution étendue expansion for holographic displays[J]. ACM Transactions on Graphics, 39, 66(2020).

    [39] Choi W Y, Lee C J, Kim B S et al. Numerical analysis on a viewing angle enhancement of a digital hologram by attaching a pixelated random phase mask[J]. Applied Optics, 60, A54-A61(2021).

    [40] Yu H, Lee K, Park J et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields[J]. Nature Photonics, 11, 186-192(2017).

    [41] Park J, Lee K, Park Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve[J]. Nature Communications, 10, 1304(2019).

    [42] Makowski M. Minimized speckle noise in lens-less holographic projection by pixel separation[J]. Optics Express, 21, 29205-29216(2013).

    [43] Chang C L, Cui W, Gao L. Holographic multiplane near-eye display based on amplitude-only wavefront modulation[J]. Optics Express, 27, 30960-30970(2019).

    [44] Chen J S, Chu D P. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications[J]. Optics Express, 23, 18143-18155(2015).

    [45] Amako J, Miura H, Sonehara T. Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator[J]. Applied Optics, 34, 3165-3171(1995).

    [46] Buckley E. Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system[J]. Journal of Display Technology, 7, 70-76(2011).

    [47] Lee B, Kim D, Lee S et al. High-contrast, speckle-free, true 3D holography via binary CGH optimization[J]. Scientific Reports, 12, 2811(2022).

    [48] Golan L, Shoham S. Speckle elimination using shift-averaging in high-rate holographic projection[J]. Optics Express, 17, 1330-1339(2009).

    [49] Takaki Y, Yokouchi M. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique[J]. Optics Express, 19, 7567-7579(2011).

    [50] Qi Y J, Chang C L, Xia J. Speckleless holographic display by complex modulation based on double-phase method[J]. Optics Express, 24, 30368-30378(2016).

    [51] Deng Y B, Chu D P. Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays[J]. Scientific Reports, 7, 5893(2017).

    [52] Sun P, Chang S Q, Liu S Q et al. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm[J]. Optics Express, 26, 10140-10151(2018).

    [53] Chang C L, Xia J, Yang L et al. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm[J]. Applied Optics, 54, 6994-7001(2015).

    [54] Chakravarthula P, Peng Y F, Kollin J et al. Wirtinger holography for near-eye displays[J]. ACM Transactions on Graphics, 38, 213(2019).

    [55] Wang D, Li N N, Li Y L et al. Curved hologram generation method for speckle noise suppression based on the stochastic gradient descent algorithm[J]. Optics Express, 29, 42650-42662(2021).

    [56] Chen C, Lee B, Li N N et al. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function[J]. Optics Express, 29, 15089-15103(2021).

    [57] Li X, Liu J, Jia J et al. 3D dynamic holographic display by modulating complex amplitude experimentally[J]. Optics Express, 21, 20577-20587(2013).

    [58] Gao Q K, Liu J, Han J et al. Monocular 3D see-through head-mounted display via complex amplitude modulation[J]. Optics Express, 24, 17372-17383(2016).

    [59] Xue G L, Liu J, Li X et al. Multiplexing encoding method for full-color dynamic 3D holographic display[J]. Optics Express, 22, 18473-18482(2014).

    [60] Maimone A, Georgiou A, Kollin J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 36, 85(2017).

    [61] Shi L, Li B C, Kim C et al. Towards real-time photorealistic 3D holography with deep neural networks[J]. Nature, 591, 234-239(2021).

    [62] Kozacki T, Chlipala M. Color holographic display with white light LED source and single phase only SLM[J]. Optics Express, 24, 2189-2199(2016).

    [63] Chlipala M, Kozacki T. Color LED DMD holographic display with high resolution across large depth[J]. Optics Letters, 44, 4255-4258(2019).

    [64] Lee S, Kim D, Nam S W et al. Light source optimization for partially coherent holographic displays with consideration of speckle contrast, resolution, and depth of field[J]. Scientific Reports, 10, 18832(2020).

    [65] Peng Y F, Choi S, Padmanaban N et al. Neural holography with camera-in-the-loop training[J]. ACM Transactions on Graphics, 39, 185(2020).

    [66] Choi S, Gopakumar M, Peng Y F et al. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays[J]. ACM Transactions on Graphics, 40, 240(2021).

    [67] Choi S, Gopakumar M, Peng Y F et al. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators[C](2022).

    [68] Choi S, Kim J, Peng Y F et al. Optimizing image quality for holographic near-eye displays with Michelson Holography[J]. Optica, 8, 143-146(2021).

    [69] Chen N, Wang C L, Heidrich W. Compact computational holographic display (invited article)[J]. Frontiers in Photonics, 3, 835962(2022).

    [70] Shimobaba T, Kakue T, Ito T. Review of fast algorithms and hardware implementations on computer holography[J]. IEEE Transactions on Industrial Informatics, 12, 1611-1622(2016).

    [71] Shimobaba T, Nakayama H, Masuda N et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display[J]. Optics Express, 18, 19504-19509(2010).

    [72] Shimobaba T, Masuda N, Ito T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane[J]. Optics Letters, 34, 3133-3135(2009).

    [73] Symeonidou A, Blinder D, Munteanu A et al. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling[J]. Optics Express, 23, 22149-22161(2015).

    [74] Matsushima K, Nakahara S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method[J]. Applied Optics, 48, H54-H63(2009).

    [75] Chen J S, Chu D P, Smithwick Q Y. Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling[J]. Journal of Electronic Imaging, 23, 023016(2014).

    [76] Gilles A, Gioia P. Real-time layer-based computer-generated hologram calculation for the Fourier transform optical system[J]. Applied Optics, 57, 8508-8517(2018).

    [77] Shi L, Huang F C, Lopes W et al. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics[J]. ACM Transactions on Graphics, 36, 236(2017).

    [78] Padmanaban N, Peng Y F, Wetzstein G. Holographic near-eye displays based on overlap-add stereograms[J]. ACM Transactions on Graphics, 38, 214(2019).

    [79] Park J H, Askari M. Non-hogel-based computer generated hologram from light field using complex field recovery technique from Wigner distribution function[J]. Optics Express, 27, 2562-2574(2019).

    [80] Wang Z, Zhu L M, Zhang X et al. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach[J]. Optics Letters, 45, 615-618(2020).

    [81] Wei L J, Sakamoto Y. Fast calculation method with foveated rendering for computer-generated holograms using an angle-changeable ray-tracing method[J]. Applied Optics, 58, A258-A266(2019).

    [82] Ju Y G, Park J H. Foveated computer-generated hologram and its progressive update using triangular mesh scene model for near-eye displays[J]. Optics Express, 27, 23725-23738(2019).

    [83] Chang C L, Cui W, Gao L. Foveated holographic near-eye 3D display[J]. Optics Express, 28, 1345-1356(2020).

    [84] Cem A, Hedili M K, Ulusoy E et al. Foveated near-eye display using computational holography[J]. Scientific Reports, 10, 14905(2020).

    [85] Moon E, Kim M, Roh J et al. Holographic head-mounted display with RGB light emitting diode light source[J]. Optics Express, 22, 6526-6534(2014).

    [86] Kazempourradi S, Ulusoy E, Urey H. Full-color computational holographic near-eye display[J]. Journal of Information Display, 20, 45-59(2019).

    [87] Zhang Z Q, Liu J, Gao Q K et al. A full-color compact 3D see-through near-eye display system based on complex amplitude modulation[J]. Optics Express, 27, 7023-7035(2019).

    [88] Makowski M, Ducin I, Kakarenko K et al. Simple holographic projection in color[J]. Optics Express, 20, 25130-25136(2012).

    [89] Yang X, Song P, Zhang H B et al. Full-color computer-generated holographic near-eye display based on white light illumination[J]. Optics Express, 27, 38236-38249(2019).

    [90] Huang Z Q, Marks D L, Smith D R. Out-of-plane computer-generated multicolor waveguide holography[J]. Optica, 6, 119-124(2019).

    [91] Kim S B, Park J H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox[J]. Optics Letters, 43, 767-770(2018).

    [92] Takaki Y, Fujimoto N. Flexible retinal image formation by holographic Maxwellian-view display[J]. Optics Express, 26, 22985-22999(2018).

    [93] Lee J S, Kim Y K, Won Y H. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens[J]. Optics Express, 26, 19341-19355(2018).

    [94] Wang Z, Zhang X, Lü G Q et al. Hybrid holographic Maxwellian near-eye display based on spherical wave and plane wave reconstruction for augmented reality display[J]. Optics Express, 29, 4927-4935(2021).

    [95] Wang Z, Zhang X, Lü G Q et al. Conjugate wavefront encoding: an efficient eyebox extension approach for holographic Maxwellian near-eye display[J]. Optics Letters, 46, 5623-5626(2021).

    [96] Zhang X, Pang Y J, Chen T et al. Holographic super multi-view Maxwellian near-eye display with eyebox expansion[J]. Optics Letters, 47, 2530-2533(2022).

    [97] Makey G, Yavuz Ö, Kesim D K et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors[J]. Nature Photonics, 13, 251-256(2019).

    [98] Zhang J Z, Pégard N, Zhong J S et al. 3D computer generated holography by non-convex optimization[J]. Optica, 4, 1306-1313(2017).

    Chenliang Chang, Bo Dai, Jun Xia, Dawei Zhang, Songlin Zhuang. Review of Holographic Near-Eye Displays for Visual Comfort[J]. Laser & Optoelectronics Progress, 2022, 59(20): 2011001
    Download Citation