• Chinese Optics Letters
  • Vol. 21, Issue 5, 052201 (2023)
Haisong Tang1、2, Zexin Feng1、2、*, Dewen Cheng1、2, and Yongtian Wang1、2
Author Affiliations
  • 1Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2MOE Key Laboratory of Optoelectronic Imaging Technology and Systems, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/COL202321.052201 Cite this Article Set citation alerts
    Haisong Tang, Zexin Feng, Dewen Cheng, Yongtian Wang. Parallel ray tracing through freeform lenses with NURBS surfaces[J]. Chinese Optics Letters, 2023, 21(5): 052201 Copy Citation Text show less
    References

    [1] S. Wills. Freeform optics: notes from the revolution. Opt. Photon. News, 28, 34(2017).

    [2] K. Garrard, T. Bruegge, J. Hoffman, T. Dow, A. Sohn. Design tools for freeform optics. Proc. SPIE, 5874, 58740A(2005).

    [3] J. P. Rolland, M. A. Davies, T. J. Suleski, C. Evans, A. Bauer, J. C. Lambropoulos, K. Falaggis. Freeform optics for imaging. Optica, 8, 161(2021).

    [4] S. Mao, Y. Li, J. Jiang, S. Shen, K. Liu, M. Zheng. Design of a hyper-numerical-aperture deep ultraviolet lithography objective with freeform surfaces. Chin. Opt. Lett., 16, 030801(2018).

    [5] D. Cheng, H. Chen, T. Yang, J. Ke, Y. Li, Y. Wang. Optical design of a compact and high-transmittance compressive sensing imaging system enabled by freeform optics. Chin. Opt. Lett., 19, 112202(2021).

    [6] R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, J. C. Miñano, F. Duerr. Design of freeform illumination optics. Laser Photonics Rev., 12, 1700310(2018).

    [7] Z. Feng, D. Cheng, Y. Wang. Iterative freeform lens design for prescribed irradiance on curved target. Opto-Electron. Adv., 3, 200010(2020).

    [8] Z. Feng, D. Cheng, Y. Wang. Iterative freeform lens design for optical field control. Photon. Res., 9, 1775(2021).

    [9] S. Ortiz, D. Siedlecki, L. Remón, S. Marcos. Three-dimensional ray tracing on Delaunay-based reconstructed surfaces. Appl. Opt., 48, 3886(2009).

    [10] S. Schedin, P. Hallberg, A. Behndig. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus. Appl. Opt., 55, 507(2016).

    [11] R. Kimura. Accelerated ray tracing for headlamp simulation(2017).

    [12] J. Ye, L. Chen, X. Li, Q. Yuan, Z. Gao. Review of optical freeform surface representation technique and its application. Opt. Eng., 56, 110901(2017).

    [13] O. Abert, M. Geimer, S. Muller. Direct and fast ray tracing of NURBS surfaces. IEEE Symposium on Interactive Ray Tracing, 161(2006).

    [14] S.-W. Wang, Z.-C. Shih, R.-C. Chang. An improved rendering technique for ray tracing Bézier and B-spline surfaces. J. Visual. Comp. Animat., 11, 209(2000).

    [15] A. Efremov, V. Havran, H.-P. Seidel. Robust and numerically stable Bézier clipping method for ray tracing NURBS surfaces. Proceedings of the 21st Spring Conference on Computer Graphics, 127(2005).

    [16] S. Campagna, P. Slusallek, H.-P. Seidel. Ray tracing of spline surfaces: Bezier clipping, Chebyshev boxing, and bounding volume hierarchy a critical comparison with new results. Vis. Comput., 13, 265(1997).

    [17] A. Hirst, J. Muschaweck, P. Benítez. Fast, deterministic computation of irradiance values using a single extended source in 3D. Opt. Express, 26, A651(2018).

    [18] H. W. Jensen, N. J. Christensen. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph., 19, 215(1995).

    [19] S. N. Pattanaik, S. P. Mudur. Computation of global illumination in a participating medium by Monte Carlo simulation. J. Visual. Comp. Animat., 4, 133(1993).

    [20] L. Szirmay-Kalos. Monte-Carlo methods in global illumination(2000).

    [21] M. Nimier-David, D. Vicini, T. Zeltner, W. Jakob. Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph., 38, 203(2019).

    [22] R. Olsson, Y. Xu. An interactive ray-tracing based simulation environment for generating integral imaging video sequences. Proc. SPIE, 6016, 60160F(2005).

    [23] S. Lee, E. Eisemann, H.-P. Seidel. Real-time lens blur effects and focus control. ACM Trans. Graph., 29, 65(2010).

    [24] J. Hanika. Spectral light transport simulation using a precision-based ray tracing architecture(2011).

    [25] D. S.-M. Liu, C.-W. Hsu. Ray-tracing based interactive camera simulation. MVA2013 IAPR International Conference on Machine Vision Applications, 383(2013).

    [26] E. Schrade, J. Hanika, C. Dachsbacher. Sparse high-degree polynomials for wide-angle lenses. Comput. Graph. Forum, 35, 89(2016).

    [27] D. D. Zhdanov, V. A. Galaktionov, A. G. Voloboy, A. D. Zhdanov, A. A. Garbul, I. S. Potemin, V. G. Sokolov. Photorealistic rendering of images formed by augmented reality optical systems. Program Comput. Soft., 44, 213(2018).

    [28] J. Wu, C. Zheng, X. Hu, F. Xu. Rendering realistic spectral bokeh due to lens stops and aberrations. Vis. Comput., 29, 41(2013).

    [29] S. Lee, E. Eisemann. Practical real-time lens-flare rendering. Comput. Graph. Forum, 32, 1(2013).

    [30] B. Steinert, H. Dammertz, J. Hanika, H. P. A. Lensch. General spectral camera lens simulation. Comput. Graph. Forum, 30, 1643(2011).

    [31] Y. Jeong, S. Lee, S. Kwon, S. Lee. Expressive chromatic accumulation buffering for defocus blur. Vis. Comput., 32, 1025(2016).

    [32] H. Joo, S. Kwon, S. Lee, E. Eisemann, S. Lee. Efficient ray tracing through aspheric lenses and imperfect bokeh synthesis. Comput. Graph. Forum, 35, 99(2016).

    [33] T.-W. Schmidt, J. Novák, J. Meng, A. S. Kaplanyan, T. Reiner, D. Nowrouzezahrai, C. Dachsbacher. Path-space manipulation of physically-based light transport. ACM Trans. Graph., 32, 129(2013).

    [34] P. Rojo, S. Royo, J. Caum, J. Ramírez, I. Madariaga. Generalized ray tracing method for the calculation of the peripheral refraction induced by an ophthalmic lens. Opt. Eng., 54, 025106(2015).

    [35] R. Yao, X. Intes, Q. Fang. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation. Biomed. Opt. Express, 7, 171(2016).

    [36] M. Mohammadikaji, S. Bergmann, J. Beyerer, J. Burke, C. Dachsbacher. Sensor-realistic simulations for evaluation and planning of optical measurement systems with an application to laser triangulation. IEEE Sens. J., 20, 5336(2020).

    [37] S. Olver, A. Townsend. Fast inverse transform sampling in one and two dimensions(2013).

    [38] P. Jester, C. Menke, K. Urban. B-spline representation of optical surfaces and its accuracy in a ray trace algorithm. Appl. Opt., 50, 822(2011).

    [39] L. Chen, Y. Gong, B. Li, X. Ren. Algorithm for intersecting line of free-form surfaces. J. Xi’An Jiaotong Univ., 34, 70(2000).

    [40] A. E. Burgess. The Rose model, revisited. J. Opt. Soc. Am. A, 16, 633(1999).

    [41] Z. Feng, D. Cheng, Y. Wang. Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance. Opt. Lett., 44, 2274(2019).

    [42] C. A. Jensen. Johann Carl Friedrich Gauss(2021).

    Data from CrossRef

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    Haisong Tang, Zexin Feng, Dewen Cheng, Yongtian Wang. Parallel ray tracing through freeform lenses with NURBS surfaces[J]. Chinese Optics Letters, 2023, 21(5): 052201
    Download Citation