• Chinese Optics Letters
  • Vol. 21, Issue 5, 052201 (2023)
Haisong Tang1,2, Zexin Feng1,2,*, Dewen Cheng1,2, and Yongtian Wang1,2
Author Affiliations
  • 1Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2MOE Key Laboratory of Optoelectronic Imaging Technology and Systems, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/COL202321.052201 Cite this Article Set citation alerts
    Haisong Tang, Zexin Feng, Dewen Cheng, Yongtian Wang, "Parallel ray tracing through freeform lenses with NURBS surfaces," Chin. Opt. Lett. 21, 052201 (2023) Copy Citation Text show less
    References

    [1] S. Wills. Freeform optics: notes from the revolution. Opt. Photon. News, 28, 34(2017).

    [2] K. Garrard, T. Bruegge, J. Hoffman, T. Dow, A. Sohn. Design tools for freeform optics. Proc. SPIE, 5874, 58740A(2005).

    [3] J. P. Rolland, M. A. Davies, T. J. Suleski, C. Evans, A. Bauer, J. C. Lambropoulos, K. Falaggis. Freeform optics for imaging. Optica, 8, 161(2021).

    [4] S. Mao, Y. Li, J. Jiang, S. Shen, K. Liu, M. Zheng. Design of a hyper-numerical-aperture deep ultraviolet lithography objective with freeform surfaces. Chin. Opt. Lett., 16, 030801(2018).

    [5] D. Cheng, H. Chen, T. Yang, J. Ke, Y. Li, Y. Wang. Optical design of a compact and high-transmittance compressive sensing imaging system enabled by freeform optics. Chin. Opt. Lett., 19, 112202(2021).

    [6] R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, J. C. Miñano, F. Duerr. Design of freeform illumination optics. Laser Photonics Rev., 12, 1700310(2018).

    [7] Z. Feng, D. Cheng, Y. Wang. Iterative freeform lens design for prescribed irradiance on curved target. Opto-Electron. Adv., 3, 200010(2020).

    [8] Z. Feng, D. Cheng, Y. Wang. Iterative freeform lens design for optical field control. Photon. Res., 9, 1775(2021).

    [9] S. Ortiz, D. Siedlecki, L. Remón, S. Marcos. Three-dimensional ray tracing on Delaunay-based reconstructed surfaces. Appl. Opt., 48, 3886(2009).

    [10] S. Schedin, P. Hallberg, A. Behndig. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus. Appl. Opt., 55, 507(2016).

    [11] R. Kimura. Accelerated ray tracing for headlamp simulation(2017).

    [12] J. Ye, L. Chen, X. Li, Q. Yuan, Z. Gao. Review of optical freeform surface representation technique and its application. Opt. Eng., 56, 110901(2017).

    [13] O. Abert, M. Geimer, S. Muller. Direct and fast ray tracing of NURBS surfaces. IEEE Symposium on Interactive Ray Tracing, 161(2006).

    [14] S.-W. Wang, Z.-C. Shih, R.-C. Chang. An improved rendering technique for ray tracing Bézier and B-spline surfaces. J. Visual. Comp. Animat., 11, 209(2000).

    [15] A. Efremov, V. Havran, H.-P. Seidel. Robust and numerically stable Bézier clipping method for ray tracing NURBS surfaces. Proceedings of the 21st Spring Conference on Computer Graphics, 127(2005).

    [16] S. Campagna, P. Slusallek, H.-P. Seidel. Ray tracing of spline surfaces: Bezier clipping, Chebyshev boxing, and bounding volume hierarchy a critical comparison with new results. Vis. Comput., 13, 265(1997).

    [17] A. Hirst, J. Muschaweck, P. Benítez. Fast, deterministic computation of irradiance values using a single extended source in 3D. Opt. Express, 26, A651(2018).

    [18] H. W. Jensen, N. J. Christensen. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph., 19, 215(1995).

    [19] S. N. Pattanaik, S. P. Mudur. Computation of global illumination in a participating medium by Monte Carlo simulation. J. Visual. Comp. Animat., 4, 133(1993).

    [20] L. Szirmay-Kalos. Monte-Carlo methods in global illumination(2000).

    [21] M. Nimier-David, D. Vicini, T. Zeltner, W. Jakob. Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph., 38, 203(2019).

    [22] R. Olsson, Y. Xu. An interactive ray-tracing based simulation environment for generating integral imaging video sequences. Proc. SPIE, 6016, 60160F(2005).

    [23] S. Lee, E. Eisemann, H.-P. Seidel. Real-time lens blur effects and focus control. ACM Trans. Graph., 29, 65(2010).

    [24] J. Hanika. Spectral light transport simulation using a precision-based ray tracing architecture(2011).

    [25] D. S.-M. Liu, C.-W. Hsu. Ray-tracing based interactive camera simulation. MVA2013 IAPR International Conference on Machine Vision Applications, 383(2013).

    [26] E. Schrade, J. Hanika, C. Dachsbacher. Sparse high-degree polynomials for wide-angle lenses. Comput. Graph. Forum, 35, 89(2016).

    [27] D. D. Zhdanov, V. A. Galaktionov, A. G. Voloboy, A. D. Zhdanov, A. A. Garbul, I. S. Potemin, V. G. Sokolov. Photorealistic rendering of images formed by augmented reality optical systems. Program Comput. Soft., 44, 213(2018).

    [28] J. Wu, C. Zheng, X. Hu, F. Xu. Rendering realistic spectral bokeh due to lens stops and aberrations. Vis. Comput., 29, 41(2013).

    [29] S. Lee, E. Eisemann. Practical real-time lens-flare rendering. Comput. Graph. Forum, 32, 1(2013).

    [30] B. Steinert, H. Dammertz, J. Hanika, H. P. A. Lensch. General spectral camera lens simulation. Comput. Graph. Forum, 30, 1643(2011).

    [31] Y. Jeong, S. Lee, S. Kwon, S. Lee. Expressive chromatic accumulation buffering for defocus blur. Vis. Comput., 32, 1025(2016).

    [32] H. Joo, S. Kwon, S. Lee, E. Eisemann, S. Lee. Efficient ray tracing through aspheric lenses and imperfect bokeh synthesis. Comput. Graph. Forum, 35, 99(2016).

    [33] T.-W. Schmidt, J. Novák, J. Meng, A. S. Kaplanyan, T. Reiner, D. Nowrouzezahrai, C. Dachsbacher. Path-space manipulation of physically-based light transport. ACM Trans. Graph., 32, 129(2013).

    [34] P. Rojo, S. Royo, J. Caum, J. Ramírez, I. Madariaga. Generalized ray tracing method for the calculation of the peripheral refraction induced by an ophthalmic lens. Opt. Eng., 54, 025106(2015).

    [35] R. Yao, X. Intes, Q. Fang. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation. Biomed. Opt. Express, 7, 171(2016).

    [36] M. Mohammadikaji, S. Bergmann, J. Beyerer, J. Burke, C. Dachsbacher. Sensor-realistic simulations for evaluation and planning of optical measurement systems with an application to laser triangulation. IEEE Sens. J., 20, 5336(2020).

    [37] S. Olver, A. Townsend. Fast inverse transform sampling in one and two dimensions(2013).

    [38] P. Jester, C. Menke, K. Urban. B-spline representation of optical surfaces and its accuracy in a ray trace algorithm. Appl. Opt., 50, 822(2011).

    [39] L. Chen, Y. Gong, B. Li, X. Ren. Algorithm for intersecting line of free-form surfaces. J. Xi’An Jiaotong Univ., 34, 70(2000).

    [40] A. E. Burgess. The Rose model, revisited. J. Opt. Soc. Am. A, 16, 633(1999).

    [41] Z. Feng, D. Cheng, Y. Wang. Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance. Opt. Lett., 44, 2274(2019).

    [42] C. A. Jensen. Johann Carl Friedrich Gauss(2021).

    Data from CrossRef

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.

    [1] Haisong Tang, Haoran Li, Zexin Feng, Yi Luo, Xianglong Mao.