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We implement Monte Carlo-based parallel ray tracing to achieve quick irradiance evaluation for freeform lenses with non-
uniform rational B-splines (NURBS) surfaces. We employ the inverse transform sampling method to sample rays uniformly
from the Lambertian light source and adopt the analytical form of the B-spline basis function to achieve fast surface inter-
polation. When performing parallel calculations for the intersections between the rays and the NURBS surfaces, we propose
a parameter transformation method to avoid the parameters escaping from the defined range in the iteration process.
Simulation results of two complex picture-generating freeform lenses show that our method is fast and effective.
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1. Introduction

Freeform optics, which refers to refractive or reflective optical
elements with freeform surfaces, is considered a revolution in
modern optics[1]. Freeform surfaces are those surfaces that do
not have rotational or translational symmetries[2]. Compared
with traditional optical surfaces, including spherical, aspherical,
and cylindrical surfaces, freeform surfaces offer much greater
design freedom, allowing optical systems to achieve previously
unimaginable imaging[3–5], illumination[6,7], and laser beam
shaping performances[8]. The performance evaluation of these
freeform optical systems is highly dependent on the light trans-
port simulation from source to target. An efficient light trans-
port computation is crucial in finding the optimal freeform
optical systems through optimization techniques.
Ray tracing is currently the most popular and powerful tech-

nique for light transport simulation. The main operation of ray
tracing is to acquire the intersection points between light rays
and surfaces. The computation efficiency of this process is
strongly influenced by the surface complexities. Freeform surfa-
ces for imaging can be conveniently described by polynomials,
e.g., XY polynomials[3]. However, plenty of illumination prob-
lems, e.g., picture-generating freeform lens design[6], are solved
numerically. The resulting freeform surfaces, which contain
many local curvature features, are hard to describe by using pol-
ynomial expansions. Time and memory consumption of ray
tracing could increase rapidly as the surface representation
becomes more and more complex. Generally, iterative methods

have to be employed to obtain the intersection points, which
heavily rely on the initial solutions. Themeshingmethod is com-
monly used to find appropriate initial solutions[9–11]. In this
method, the grids are checked one by one to judge if the inter-
section occurs on the current grid. However, this method
becomes less efficient when the required number of mesh grids
is large.
Optical surfaces that are highly freeform and contain both

global and local structures can be represented by B-splines,
especially by its subset, non-uniform rational B-splines
(NURBS)[12,13]. However, it is not easy to determine the inter-
section points, even their initial approximations, between the
rays and the NURBS surface with high efficiency. The clipping
method can be employed to accelerate the ray-tracing process of
NURBS surfaces[14,15]. This method adaptively divides the sur-
face parameters into uniform parts on the 2D parameter space to
find the region where the light ray intersects with the surface.
Then, the region is gradually subdivided to determine an appro-
priate initial solution. However, this method suffers from
reporting wrong intersections because the sampling points on
the surface are not uniformly distributed when parameters are
uniformly sampled[15,16].
Aside from the intersection problem, another important issue

is the way of implementing ray tracing. Although some deter-
ministic methods have been discussed, it is restricted in many
applications[17]. In the evaluation and optimization process,
the Monte Carlo (MC) ray-tracing method gains wider accep-
tance as the gold standard for calculating light transport through
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optical systems[18–20]. MC ray tracing randomly samples light
rays on a light source with a specific probability and traces
the light path through the optical system by Snell’s laws.
Then, it accumulates the light energy transmitted to the receiver
to calculate the irradiance distribution.
Some commercial softwares can perform MC ray tracing of

freeform optical elements and systems, but the related algo-
rithms are rarely discussed publicly. Many self-developed
ray-tracing programs are successfully applied to artificial image
simulation[21–27], aberration analysis[28–32], and optical inspec-
tion[33–36]. Some entire ray-tracing pipelines for nonimaging
systems have been described in detail[11,20]. Most of the current
MC ray-tracing algorithms trace rays one by one, based on the
same law and formula.
The ray-tracing process could be accelerated if plenty of rays

are traced simultaneously. However, it is a high-dimensional
problem that the parallel intersection process requires simulta-
neous acquisition of the initial solutions of all current rays. The
traditional way of obtaining an initial solution to the intersection
problem of a single ray and the freeform surface requires simul-
taneous computation on mesh grids, which is not suitable for
parallel ray tracing. In addition, when the initial solution is
not accurate enough, the parameters of the intersection could
easily escape from the defined range as the iteration progresses,
resulting in many calculation errors.
We implement MC parallel ray tracing (PRT) for freeform

illumination lenses with NURBS surfaces to realize a fast irradi-
ance evaluation. We achieve uniform sampling by inverse trans-
form sampling and fast surface interpolation by adopting the
analytical form of the B-spline basis function. We propose a
parameter transform method to reduce the accuracy require-
ment of the initial solution during the intersection process using
Newton’s method, which could improve the percentage of suc-
cessfully traced light rays by parallel computation. This fast MC
simulation program can facilitate the evaluation and optimiza-
tion of freeform lenses. Section 2 describes in detail the parallel
ray-tracing method for freeform NURBS surfaces. Section 3
gives two examples to demonstrate the effectiveness of the pro-
posed method.

2. Methods

The purpose of the ray-tracing process is to trace the changes in
the spatial parameters �x, y� and orientation parameters �rx , ry�,
which uniquely characterize a light ray in a three-dimensional
space. �x, y, rx, ry� form a four-dimensional parameter space,
which degenerates to a two-dimensional one for a special case
when all the rays are emitted from a point light source.
Figure 1 illustrates the procedures of our parallel ray-tracing
algorithm. After defining the optical system parameters, we
sample the light source randomly in both spatial locations
and orientations, generating a random set of rays. We then
implement MC ray propagation from the source, through the
freeform lenses, to the receiver. The difficulty arises in simulta-
neously determining all the parameters �x, y, rx, ry� for the

current set of rays transporting through a complex freeform sur-
face. In this decisive and important step, we propose a parameter
transformation method to reduce the ray-surface intersection
errors in the iterative process of Newton’s method. Finally, we
count the number of rays that reach different positions of the
receiver to determine the irradiance distribution. The three steps
are described in detail in the following section.

2.1. Sampling rays from the light source

The light source is required to be sampled randomly in both spa-
tial locations and orientations. Different sampling probability
density functions P�x, y, rx, ry� should ensure thatw�x, y, rx, ry� ·
P�x, y, rx, ry� is proportional to L�x, y, rx, ry� · cos θ, where L is
the radiance distribution of the source, w denotes the weights
of the sampled rays, and θ denotes the angles from the source
surface normal to the sampled rays. The initial values of w
can be set as 1, and then P is proportional to the intensity dis-
tribution of the light source. However, this can add computation
complexity when L is not a constant.
Here, we first sample the position coordinates and solid angle

of the light source uniformly and then assign the initial weights
proportional to L · cos θ. In this way, there is an equivalent rela-
tion between the radiance distribution L and the weights of the
sampled light rays,

L�x, y, rx, ry� · cos θδSδΩ ∝ Eμ

�Xk
i=0

wi

�
: (1)

Herein, δS denotes a small area on the surface around �x, y�,
and δΩ denotes a small solid angle around �x, y, rx , ry�.
Eμ�

P
k
i=0 wi� is the mathematical expectation of the summed

weight of the light rays inside the small space δSδΩ, and k
denotes the number of rays inside the small space.

number of rays 

Generate 
random rays

Build freeform 
lens

Parallel 
ray tracing

Count rays on 
receiver

Fig. 1. Flow chart of our parallel ray-tracing algorithm.
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In a spherical coordinate system, �rx, ry� can be replaced with
the zenith angle θ and the azimuth angle φ, as shown in Fig. 2(a).
Note that the light rays sampled uniformly with θ and φ are not
uniformly distributed in space[19]. Since the magnitude of the
small solid angle δΩ around �θ,φ� is proportional to
sin θδθδφ, uniform sampling of the solid angle should guarantee
that the probability is proportional to φ and sin θ.
We employ the inverse transform sampling method[37] to

obtain random variables with arbitrary probability distribution
f �x�, where x ∈ �0, 1�. This method first calculates the cumula-
tive probability distribution function F�x� = ∫ ∞

−∞f �x�dx accord-
ing to the required probability distribution function f �x�. A
uniformly distributed random variable Y = F�x� can be gener-
ated. Finally, the random variable X with probability distribu-
tion f �X� can be obtained as X = F−1�x�. For the sampling of
the zenith angle here, we first obtain a random uniformly dis-
tributed variable Y between 0 and 1; then the probability distri-
bution function X = arccos�1 − Y� is a sine function. Thus,
uniform sampling of random rays in space can be generated
based on setting the probability distribution functions as
θ ∼ sin θ, φ ∼ U�0, 2π�.
Figures 2(b) and 2(c) illustrate the ray distributions of a

Lambertian light source sampled in two strategies: θ ∼ sin θ
and θ ∼ U�0, 0.5π�, where φ is uniformly sampled for each strat-
egy. The pseudo-code of the random rays sampling process is
shown in Algorithm 1.

Algorithm 1. Random rays sampling (RRS) process. The function RAND( )
denotes the generation of a uniformly distributed random number in [0,1].

Input: length and width of the rectangular light source (a, b)

Output: starting points ŝ, ray directions r̂, weights w

1: function RRS(a, b)

2: σ1 ← RAND��, σ2 ← RAND��, σ3 ← RAND��, σ4 ← RAND��
3: x0 ← �σ1 − 0.5�a, y0 ← �σ2 − 0.5�b, z0 ← 0

4: θ ← arccos�1 − σ3�, φ ← 2πσ4

5: rx ← sin θ cos φ, ry ← sin θ sin φ, rz ← cos θ

6: ŝ ← �x0 , y0 , z0�, r̂ ← �rx , ry , rz�
7: w ← cos θ

8: return ŝ, r̂,w

9: end function

2.2. Light propagation through freeform optical surfaces

After generating a sequence of random rays from the light
source, we trace the rays propagating through the freeform opti-
cal surfaces represented with NURBS. The key operation is the
determination of the intersection points between rays and sur-
faces. Thus, we accelerate the intersection process by modifying

the surface interpolation strategy and introducing a parameter
transformation method. After obtaining the intersection points,
we use Snell’s law in vector form to calculate the outgoing ray
vectors.

2.2.1. Intersection acquisition on optical surface

An NURBS surface is obtained as the tensor product of two
NURBS curves parameterized by two parameters u and v,

Q�u, v� =
Xms−1

i=0

Xns−1
j=0

Ni,p�u�Nj,q�v�Ri,jP�i, j�, (2)

where u and v lie in �0, 1�, P�i, j� denotes the control point, Ri,j is
the weight of P�i, j�, and Ni,p�u� and Nj,q�v� are the basis func-
tions of the B-splines of degree p and q in the u and v directions,
respectively. The basis functionNi,p�u� is defined by the De Boor
Cox recursion formula[12],

8>>>>><
>>>>>:

Ni;0 =
�
1 if u ∈ �ui, ui�1�
0 if else

,

Ni,p =
u−ui

ui�p−ui
Ni,p−1�u� � ui�p�1−u

ui�p�1−ui�1
Ni�1,p−1�u�,

define :
0
0
= 0:

�3�

Herein, ui is the selected node which divides �0, 1� intoms � p
segments. We employ the quasi-uniform nodes here, which can
simplify the formula for the B-spline basis functions.

Fig. 2. (a) Zenith angle θ and azimuth angle φ of a randomly sampled ray.
(b) The illustration of two different sampling strategies, θ ∼ sin θ and
θ ∼ U (0, 0.5π), where φ is uniformly sampled. (c) The distribution of the sam-
pling points with azimuth and zenith angles corresponding to the uniform
spatial sampling.
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The computation volume required for interpolation increases
exponentially with the number of control points and the inter-
polation degree. The major reason is that the recursive method
repeatedly computes the formula with a large storage of accumu-
lative data and no zero N�ui� only when ui ∈ �ui, ui�p�1�. These
unnecessary calculations slow down the intersection point-find-
ing process. Abert et al. transferred the computationally expen-
sive recursion into single instruction multiple-data (SIMD)
suitable form to reduce the time cost of executed commands[13].
Jester et al. proposed the B-spline quasi-interpolation scheme,
which improves the computational speed of B-spline surfaces
within a certain error range[38]. To improve the speed of the
interpolation process, we employ the analytical form of the B-
spline basis function of degree 2[13]. In addition, only the control
points whose corresponding basis functions are not 0 are con-
sidered in the interpolation process to avoid meaningless oper-
ations. Such a strategy can promote calculation efficiency greatly
when the control point number is much larger than the interpo-
lation order.
After specifying the interpolation strategy, let us now turn to

the calculation of the intersection between the rays and the
NURBS surface. Suppose we have a ray parameterized as
�x�t�, y�t�, z�t�� = ŝ� r̂ · t, where ŝ = �x0, y0, z0� is the starting
point, and r̂ = �rx, ry, rz� denotes the ray direction. The intersec-
tion can be formulated by the following equation:

Q�u, v� = ŝ� r̂ · t, (4)

where Q = �Q1,Q2,Q3� denotes a point on the NURBS surface.
After expressing the ray direction with θ and φ, Eq. (4) can be
rewritten as

8>><
>>:
Q1�u, v� − x0 = sin θ cos φ · t

Q2�u, v� − y0 = sin θ sin φ · t

Q3�u, v� − z0 = cos θ · t

: �5�

We rotate φ and θ around the z-axis and y-axis, respectively,
so that the new z-axis coincides with the direction of the light
ray. This way can simplify the intersection-solving process[39].
The transformation matrices describing the rotations are

Rz =

" cos φ sin φ 0
− sin φ cos φ 0

0 0 1

#
, Ry =

" cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

#
, (6)

where Rz describes the rotation around the z-axis, and Ry

describes the rotation around the y-axis.

After applying the rotation matrices to Eq. (5), we obtain

Ry · Rz ·

2
64
Qx�u, v� − x0

Qy�u, v� − y0
Qz�u, v� − z0

3
75

= Ry · Rz ·

2
64
sin θ · cos φ · t

sin θ · sin φ · t

cos θ · t

3
75 =

2
4 0

0

t

3
5: (7)

We take the first two equations, which could be represented as
f 1�u, v� = 0 and f 2�u, v� = 0. Then, the parameters �u, v� of the
intersection point on the surface can be solved by using
Newton’s method. Newton’s iteration step is given by

�
uk�1

vk�1

�
=
�
uk
vk

�
− J−1

�
f 1�uk, vk�
f 2�uk, vk�

�
, (8)

where �uk, vk� is the approximate solution of the kth iteration,
and J is the Jacobian matrix,

J =

2
4 ∂f 1

∂u
∂f 1
∂v

∂f 2
∂u

∂f 2
∂v

3
5: (9)

Newton’s method needs a good initial estimate. Most of the
methods divide the surface into many triangular meshes to find
a suitable initial solution. If the meshing is sufficiently detailed,
then the initial solution could lead to a good iteration result.
Such a strategy is not suitable for parallel computation here.
A slight deviation from the exact initial solution could cause

the value of u or v to exceed the range of [0,1], resulting in sur-
face interpolation errors. We adopt a parameter transformation
method to solve this problem. In this method, a new pair of
parameters, �α, β�, are employed to replace �u, v�, and their rela-
tionships can be described as

u =
1

e−4α � 1
, v =

1

e−4β � 1
: (10)

The parameter transformation has the following characteris-
tics:

8>><
>>:
α, β ∈ �−∞, �∞�, u, v ∈ �0, 1�
du
dα > 0, dv

dβ > 0, dudα
��
α=0 = 1, dvdβ

��
β=0

= 1

ujα=0 = 0.5, vjβ=0 = 0.5

: �11�

Such a transformation can avoid the values of �u, v� exceeding
[0, 1]. The intersection equations now become f 1�α, β�=
0 and f 2�α, β� = 0. The new Jacobian matrix J in Newton’s
method can be acquired based on the chain rule
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8<
:

∂f
∂α = ∂f

∂u ·
du
dα

∂f
∂β = ∂f

∂v ·
dv
dβ

: �12�

Herein, f can be f 1 or f 2.We obtain the initial solution using a
coarse mesh on the surface. For the kth iteration, �αk, βk� can be
calculated from �uk, vk� by the inverse operation of Eq. (10). The
Newton iteration formula Eq. (8) is changed into

�
αk�1

βk�1

�
=
�
αk
βk

�
− J−1

�
f 1�αk, βk�
f 2�αk, βk�

�
: (13)

Such a parameter transformation could reduce the accuracy
requirement of the initial solution to the iterative computation.
Thus, we can adopt surface points with a relatively coarse den-
sity as the initial solution, which can save a lot of time.

2.2.2. Refraction on the optical surface

Once we obtain the intersection points between the rays and the
surface, we determine the refraction directions of the outgoing
rays based on Snell’s law. As illustrated in Fig. 3, î denotes the
unit incident ray vectors, t̂ denotes the unit outgoing ray vectors,
n̂ denotes the unit normal vectors to the intersection points on
the surface, and n1 and n2 denote the refractive indices of the
incident and exit media. Then, t̂ can be obtained based on
Snell’s law in vector form,

t̂ =
1
n2

�
n1 î�

� ����������������������������������������
n22 − n21 � n21�n̂ · î�2

q
− n1n̂ · î

�
n̂

	
: (14)

Fresnel loss occurs when a light ray passes through a refractive
optical surface. The reflectivities rs and rp for s-polarized light
and p-polarized light, respectively, are written as

rs =
n1 cos θi − n2 cos θt
n1 cos θi � n2 cos θt

, rp =
n1 cos θt − n2 cos θi
n1 cos θt � n2 cos θi

,

�15�

where θi and θt denote the incident and refracted angles, respec-
tively. The reflectances Rs and Rp for s-polarized light and p-
polarized light, respectively, can be obtained as Rs = r2s and
Rp = r2p. The transmittances Ts and Tp for s-polarized light and
p-polarized light, respectively, can be simply obtained as Ts =
1 − Rs and Tp = 1 − Rp. For natural light or typical LED light,
the total transmittance T can be taken as the average of Ts

and Tp. We adjust the weights w�x, y, rx, ry� of the light rays
according to the transmittance T during ray tracing.
The pseudo-code for simulating the light transport through a

freeform surface is provided in Algorithm 2. Herein, we consider
ray tracing as successful when the cosine distance d = 1 −
dot�Q − ŝ, r̂�=kQ − ŝk2 is less than the allowed error ε, where
Q is the found intersection point.

Algorithm 2. Light transport simulation through a freeform NURBS surface.
During the parallel ray-tracing process, we specify a fixed number of
iterations in the INTER( ) function and record the number of rays that
satisfy dk ≤ ε.

Input: incident ray parameters ŝ, r̂,w, surface control points P, refractive
indices n1 , n2

Output: outgoing ray parameters ŝ
0
, r̂

0
,w

0

1: function TRACE(̂s, r̂,w,P, n1 , n2)

2: u, v ← INTER�ŝ, r̂,P�, î ← r̂

3: Q, ∂Q=∂u, ∂Q=∂v ← NURBS�u, v,P�
4: get surface normal vectors n̂

5: get refraction directions t̂ by Eq. (14)

6: get reflectances Rs and Rp based on Eq. (15)

7: T ← 1 − �Rs � Rp�=2
8: ŝ

0
← Q, r̂

0
← t̂,w

0
← T · w

9: return ŝ
0
, r̂

0
,w

0

10: end function

11: function INTER(̂s, r̂,P) ⊳ intersection acquisition

12: generate rough mesh grids u0 , v0 ∈ �0, 1�
13: A, ∂A=∂u, ∂A=∂v ← NURBS�u0 , v0 ,P�
14: d ← 1 − dot�A − ŝ, r̂�=kA − ŝk2
15: dmin =min�d�
16: i ← index�d, dmin�
17: uk ← u0�i�, vk ← v0�i�, dk = dmin ⊳ initial solutionFig. 3. Refraction on freeform surface.
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18: αk ← − ln�1=uk − 1�=4, βk ← − ln�1=vk − 1�=4
19: while dk > ε do ⊳ ε is the allowed error

20: Q, ∂Q=∂u, ∂Q=∂v ← NURBS�uk , vk ,P�
21: dk ← 1 − dot�Q − ŝ, r̂�=kQ − ŝk2
22: get Jacobian matrix J by Eqs. (9) and (12)

23: get αk�1 , βk�1 by Eq. (13)

24: αk ← αk�1 , βk ← βk�1

25: uk ← 1=�e−4αk � 1�, vk ← 1=�e−4βk � 1�
26: end while

27: return uk , vk

28: end function

29: function NURBS(u, v,P) ⊳ surface interpolation

30: generate quasi-uniform node vectors �u1 , u2; : : : ; ui; : : : �
and �v1 , v2; : : : ; vj; : : : � using shape (P)

31: get Ni,p�u�,Nj,q�v� based on Eq. (3)

32: get interpolation points Q and the partial derivatives
∂Q=∂u, ∂Q=∂v, while Ri,j = 1 based on Eq. (2)

33: return Q, ∂Q=∂u, ∂Q=∂v

34: end function

After finishing the ray tracing through the entrance surface,
the ray tracing through the second surface can be implemented
based on the same procedure, where the intersection points on
the entrance surface are set as the starting points of the next ray
tracing. Such a process is repeated until the light rays hit the
receiver.

2.3. Energy statistics on the receiver

After finishing the ray tracing through all the freeform surfaces
and determining the intersection points between the rays and
the target plane, we count the number of rays for each small grid
of the discretized receiver.
Suppose that the total radiant power emitted from the light

source is W0. The weight of the ith ray is denoted as w0,i, and
the number of rays is n. The radiant power of a ray with the unit
weight can be acquired by

Wunit =
W0P
n
i=1 w0,i

: (16)

Suppose that the range of the receiver is f�x, y�jxmin <
x < xmax, ymin < y < ymaxg, which is discretized into mc × nc
cells. The area of each cell can be obtained as

Scell =
�xmax − xmin� · �ymax − ymin�

mc · nc
: (17)

The energy weight of the ith light ray that hits the receiver is
changed into wi

0 . The total number of rays of the jth cell is nj.
The irradiance value of the jth cell, j = 1, 2, : : : , mc × nc, can be
acquired by

Ej =
Wunit ×

Pnj
i=1 wi

0

Scell
: (18)

The pseudo-code of the energy statistic process and the arith-
metic flow of our PRT are shown in Algorithm 3. Note that the
more the total traced rays, the higher the signal-to-noise ratio
(SNR) of the simulated irradiance distribution. A discussion
of the appropriate number of rays to be traced for a certain set-
ting can be found in Ref. [40].

Algorithm 3. Pseudo-code for PRT. We use the GPU to trace batches of light
rays simultaneously. The function ZEROS�mc , nc� means generating an
mc × nc zeros matrix.

Input: light source size �a, b�, total energy W0 , number of rays n, control
points �P1 ,P2� of the two surfaces, refractive indices �n1 , n2� of air and
lens, z-coordinate zr of receiver, range f�xmin , xmax�, �ymin , ymax�g of the
receiver, number of cells �mc , nc�
Output: the irradiance distribution on the receiver E

1: xr ← yr ← wr ← ZEROS�n�, ws ← 0

2: for i = 1 to n do

3: ŝ0 , r̂0 ,w0 ← RRS�a, b�
4: ws ← ws � w0

5: ŝ1 , r̂1 ,w1 ← TRACE�ŝ0 , r̂0 ,w0 ,P1 , n1 , n2�
6: ŝ2 , r̂2 ,w2 ← TRACE�ŝ1 , r̂1 ,w1 ,P2 , n2 , n1�
7: �x, y, z� ← ŝ2 , �rx , ry , rz� ← r̂2 ⊳ decomposition

8: t ← �zr − z�=rz
9: xr�i� ← x � t · rx , yr�i� ← y � t · ry ,wr�i� ← w2

10: end for

11: wr ← �W0=ws� · wr

12: E ← STATIC�xr , yr ,wr ,mc , nc , xmin , xmax , ymin , ymax�
13: function STATIC(x, y,w,mc , nc , xmin , xmax , ymin , ymax)

14: E ← ZEROS�mc , nc�
15: for i = 1 to mc do

16: for j = 1 to nc do

17: Scell = �xmax − xmin� · �ymax − ymin�=�mc · nc�
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18: wij ← sum w of the rays on the ijth cell

19: Eij ← wij=Scell

20: end for

21: end for

22: return E

23: end function

3. Results

To demonstrate the effectiveness of our method, we implement
irradiance evaluation of the picture-generating freeform lenses
designed with the iterative wavefront tailoring (IWT)
method[41]. As shown in Fig. 4, the light rays emitted from a light
source propagate through the entrance and exit optical surfaces
and then generate a complex irradiance distribution of the
picture type at the receiver. The entrance surface can be a spheri-
cal, aspherical, or freeform surface, and the exit surface is a
freeform one. Note that the freeform surface profiles of the

picture-generating freeform lenses can be very complex, which
is difficult to be described by conventional polynomials, e.g., XY
or Zernike polynomials.
The ray tracing performances are evaluated by the time con-

sumption, the intersection precision, and the success rate. The
intersection precision is measured by the maximum or average
value of the Euclidean distances from the calculated intersection
points on the exit surface to the light rays. The success rate τ is
defined as the ratio of the number of successfully traced rays to
the total number of traced rays.

Fig. 4. Schematic of the ray tracing from the source, through the entrance
and exit surfaces of the freeform lens, to the target, generating a complex
irradiance pattern.

Fig. 5. Illustration of (a) the spherical-freeform lens and an extended light
source and (b) the continuous change of the freeform exit surface.

SS: source size

0.00 W/m2

0.63 W/m2

n = 107, m = 1282

SS: 0.001,2.000
n = 107, m = 1282

SS: 2.000,2.000

n = 107, m = 642

SS: 0.001,0.001
n = 107, m = 2562

SS: 0.001,0.001

n = 108, m = 1282

SS: 0.001,0.001
n = 106, m = 1282

SS: 0.001,0.001

n = 107, m = 1282

SS: 0.001,0.001

Fig. 6. Simulated irradiance distributions of the first example under different
settings of the number of rays, the number of cells, and the source size. Each
simulated irradiance distribution is in the range of {(x,y) | −1000 mm < x <
1000 mm, −1000 mm < y < 1000 mm} and filtered by a 3 × 3 uniform mask.
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Our computer is equipped with an Intel i9-12900 k CPU with
x86-64 architecture and an NVIDIA RTX3090 GPU with 24 GB
video memory and NVIDIA Ampere architecture. The pro-
gramming language is Python 3.11. We use the GPU to trace
batches of light rays simultaneously and the CPU to control
the calculation flow.We use the CuPy package of Python for sur-
face modeling, intersection solving, and other parallel scientific
calculations. The computing time is mainly affected by the GPU
performance.
The first example is the ray tracing of a spherical-freeform

lens as shown in Fig. 5(a). The refractive index of the lens is
1.4932. This lens is aimed at converting the light distribution
of an LED source into a 2000mm × 2000mm irradiance distri-
bution at z = 1000mm, forming the letters “BIT”. The maxi-
mum dimensions of the lens along the x, y, and z directions
are 16.97 mm, 16.28 mm, and 12.01 mm, respectively. It can
be seen from Fig. 5(b) that the freeform exit surface has complex
local features which are directly related to the target irradiance
pattern. The entrance surface is 50 × 50 3D grids sampled from a
semi-sphere of 5 mm radius, which is also expressed with
NURBS. The complex exit freeform surface is described by
256 × 256 control points. We employ a 3 × 3 uniform filter
for the simulated irradiance distribution to decrease the noise
of the MCmethod. Figure 6 shows the simulated irradiance dis-
tributions of our algorithm under different settings of the num-
ber of light rays n, the number of receiver cellsm =mc × nc, and

the source sizes. Table 1 gives the corresponding time consump-
tion, precision of the solved intersections, and the success rates.
As shown in Table 1, for each case of the first example, the

success rate τ is higher than 99.9%. τ could be reduced to below
about 96%without using the parameter transformation method.
In addition, the parameter transformation method improves the
convergence of Newton’s method for solving the intersection
points. The iterative solutions would not jump out of the allowed
range of the parameters in the early stage of the iterative process.
However, the intersection calculation errors can rise rapidly
toward the edge of the surface (u, v → 0 or 1) since the deriva-
tives �dα=du, dβ=dv� of the transformation functions tend to 0.
This problem could be avoided by extending the surface so that
the active area is bounded away from the edge of the surface.
The second example is about the ray tracing of a more com-

plex double-freeform lens with the maximum dimensions of
15.33mm × 16.47mm × 10.04mm [see Fig. 7(a)], whose refrac-
tive index is also 1.4932. Each of the freeform surfaces contains
1024 × 1024 control points. This freeform lens aims at generat-
ing a portrait of Johann Carl Friedrich Gauss[42] with the size of
240mm × 240mm at z = 100mm from a point-like source
whose size is 0.001mm × 0.001mm. We perform the PRT
using 107 rays. The simulated irradiance distribution is shown
in Fig. 7(b). The maximum and average values of the distances
from the calculated intersection points on the exit surface to the
light rays are 2.33 × 10−7 mm and 5.16 × 10−8 mm, respectively.
Our program only takes∼11.52 s to perform the simulation, and
τ is about 99.951%.
We analyze the time complexity of our PRT program for the

first example with respect to the number of rays, the number of
receiver cells, the size of the light source, and the number of con-
trol points.We use the control variablemethod to practically test
the time consumption of the program. The results are presented
in Fig. 8. The time complexity for the number of rays is O�n�.
Because n is much larger than the number of GPU cores, parallel
computing is still done in batches on the hardware. As shown in
Fig. 8(a), the simulation time increases linearly as n increases.
For the number of receiver cells, the total time complexity is
approximately O�1�. As shown in Fig. 8(b), as m increases,
the simulation time remains almost unchanged. The reason is

Fig. 7. The second simulation example. (a) The double-freeform lens with a
point-like source and (b) its simulation result.

Table 1. Performances of the Proposed PRT Algorithm Evaluated by the Time Consumption, the Intersection Precision, and the Success Rate τ.

Number of rays 107 106 108 107 107 107 107

Source size (0.001,0.001) (0.001,0.001) (0.001,0.001) (0.001,0.001) (0.001,0.001) (0.001,2.0) (2.0,2.0)

Number of bins (128,128) (128,128) (128,128) (64,64) (256,256) (128,128) (128,128)

Time cost (s) 11.16 1.30 112.86 11.13 11.12 11.11 11.17

Intersection precision (mm) max 2.80 × 10−4 2.40 × 10−4 2.83 × 10−4 2.75 × 10−4 2.70 × 10−4 2.72 × 10−4 2.64 × 10−4

mean 5.33 × 10−8 5.31 × 10−8 5.35 × 10−8 5.33 × 10−8 5.32 × 10−8 5.34 × 10−8 5.34 × 10−8

Success rate τ 0.99978 0.99978 0.99973 0.99978 0.99978 0.99965 0.99945
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that most of the time is spent on the intersection-seeking proc-
ess. Theoretically, the time complexity of the ray energy statis-
tical process is O�m�. However, since n is typically much larger
than m to ensure low-level Monte Carlo noise, the impact of m
on the overall simulation time is negligible. The total time com-
plexity for the source size is aboutO�1�, as illustrated in Fig. 8(c).
The source size only affects the range of the starting points of the
randomly sampled rays. We adopt the 2-order analytic form of
the NURBS basis functions, which can avoid many recursive
operations in base function modeling. Thus, the total time com-
plexity for the control points of the lens surfaces isO�1�, as dem-
onstrated in Fig. 8(d).

4. Conclusion and Discussion

We have proposed a PRT method for freeform lenses with com-
plex NURBS surfaces. In this method, we employ the inverse
transform sampling strategy to uniformly sample rays in space.
We also adopt the analytical form of the B-spline basis function
of 2 degrees to achieve a fast surface interpolation. More impor-
tantly, we proposed a parameter transformmethod to reduce the
initial solution requirement of Newton’s method for solving
intersections, which thus increases the success rate of parallel
ray tracing. Two examples verify that the proposed PRTmethod
is efficient and effective for quick irradiance evaluations of com-
plex freeform irradiance tailoring lenses.
The proposed PRT method is also applicable to freeform sur-

faces with other expressions, includingXY polynomials, Zernike
polynomials, and radial base functions. Our method can help
designers quickly evaluate their design results, especially for
freeform surfaces with high degrees of freedom. As a relatively
fast irradiance evaluation technique, our method can also be
applied to the optimal design of freeform lenses. The proposed
method is currently restricted to those cases in which a single
light ray does not have multiple intersections with a surface.
However, such a restriction is fulfilled by most of the freeform
lens designs for illumination and beam-shaping applications.
Future work may include the development of non-sequential
PRT algorithms and the application of freeform illumination

lens design using the automatic differentiation technique in
the framework of MindSpore.
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