• Chinese Optics Letters
  • Vol. 20, Issue 1, 013601 (2022)
Peng Sun1、2, Mengdie Zhang2, Fengliang Dong2、3、*, Liefeng Feng1、**, and Weiguo Chu2、3、***
Author Affiliations
  • 1Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300072, China
  • 2Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202220.013601 Cite this Article Set citation alerts
    Peng Sun, Mengdie Zhang, Fengliang Dong, Liefeng Feng, Weiguo Chu. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared[J]. Chinese Optics Letters, 2022, 20(1): 013601 Copy Citation Text show less
    References

    [1] Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, Y. Li. Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Opt. Express, 24, 16309(2016).

    [2] A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, A. Faraon. Planar metasurface retroreflector. Nat. Photon., 11, 415(2017).

    [3] Y. Zhou, I. I. Kravchenko, H. Wang, H. Zheng, G. Gu, J. Valentine. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci. Appl., 8, 80(2019).

    [4] S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. Phys. Rev. Lett., 110, 207401(2013).

    [5] Z. Xuan, J. Li, Q. Liu, F. Yi, S. Wang, W. Lu. Artificial structural colors and applications. Innovation, 2, 100081(2021).

    [6] M. Deng, T. Ren, J. Wang, L. Chen. Doublet achromatic metalens for broadband optical retroreflector. Chin. Opt. Lett., 19, 071701(2021).

    [7] A. Pors, M. G. Nielsen, R. L. Eriksen, S. I. Bozhevolnyi. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett., 13, 829(2013).

    [8] H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, W. Lu. Reflective metalens with sub-diffraction-limited and multifunctional focusing. Sci. Rep., 7, 12632(2017).

    [9] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358(2017).

    [10] Z. Li, C. Cheng, H. Liu, D. Li, S. Xu, H. Liu, J. Zhang, S. Zhang. Experimental generation of Kagome lattices using metasurface of integrated convex lens. Chin. Opt. Lett., 18, 012201(2020).

    [11] C. Jin, J. Zhang, C. Guo. Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging. Nanophotonics, 8, 451(2019).

    [12] W.-L. Guo, G.-M. Wang, K. Chen, H.-P. Li, Y.-Q. Zhuang, H.-X. Xu, Y. Feng. Broadband polarization-conversion metasurface for a cassegrain antenna with high polarization purity. Phys. Rev. Appl., 12, 014009(2019).

    [13] W. Wang, Z. Guo, K. Zhou, L. Ran, Y. Sun, F. Shen, G. Fan, Y. Li, S. Qu, S. Liu. Metalens focusing the co-/cross-polarized lights in longitudinal direction. Plasmonics, 12, 69(2016).

    [14] D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, X. Luo. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photon. Rev., 9, 713(2015).

    [15] Y. Bao, Q. Jiang, Y. Kang, X. Zhu, Z. Fang. Enhanced optical performance of multifocal metalens with conic shapes. Light Sci. Appl., 6, e17071(2017).

    [16] C. Williams, Y. Montelongo, T. D. Wilkinson. Plasmonic metalens for narrowband dual-focus imaging. Adv. Opt. Mater., 5, 1700811(2017).

    [17] Y. Yao, W. Wu. All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector. Adv. Opt. Mater., 5, 1700090(2017).

    [18] M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, F. Capasso. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819(2017).

    [19] X. Zhang, C. Guan, K. Wang, L. Cheng, J. Yang, J. Shi, H. Liu, Z. Liu, L. Yuan. Multi-focus optical fiber lens based on all-dielectric metasurface. Chin. Opt. Lett., 19, 050601(2021).

    [20] R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, D. P. Tsai. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227(2019).

    [21] H. Pahlevaninezhad, M. Khorasaninejad, Y. W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C. W. Qiu, F. Capasso, M. J. Suter. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon., 12, 540(2018).

    [22] Z.-B. Fan, H.-Y. Qiu, H.-L. Zhang, X.-N. Pang, L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, J.-W. Dong. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 67(2019).

    [23] M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, F. Capasso. Polarization-insensitive metalenses at visible wavelengths. Nano Lett., 16, 7229(2016).

    [24] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays. Nat. Commun., 6, 7069(2015).

    [25] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, D. P. Tsai. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227(2018).

    [26] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220(2018).

    [27] W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [28] H. P. Zhou, L. Chen, F. Shen, K. Guo, Z. Y. Guo. Broadband achromatic metalens in the midinfrared range. Phys. Rev. Appl., 11, 024066(2019).

    [29] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [30] B. Yu, J. Wen, X. Chen, D. Zhang. An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit. Appl. Phys. Express, 12, 092003(2019).

    [31] F. Balli, M. Sultan, S. K. Lami, J. T. Hastings. A hybrid achromatic metalens. Nat. Commun., 11, 3892(2020).

    [32] A. Ndao, L. Hsu, J. Ha, J. H. Park, C. Chang-Hasnain, B. Kante. Octave bandwidth photonic fishnet-achromatic-metalens. Nat. Commun., 11, 3205(2020).

    [33] S. Shrestha, A. C. Overvig, M. Lu, A. Stein, N. Yu. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [34] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [35] L. Hsu, M. Dupre, A. Ndao, J. Yellowhair, B. Kante. Local phase method for designing and optimizing metasurface devices. Opt. Express, 25, 24974(2017).

    [36] Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, J.-W. Dong. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl., 10, 014005(2018).

    [37] V. Liu, S. Fan. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun., 183, 2233(2012).

    [38] Z. P. Zhuang, R. Chen, Z. B. Fan, X. N. Pang, J. W. Dong. High focusing efficiency in subdiffraction focusing metalens. Nanophotonics, 8, 1279(2019).

    [39] G. P. Rédei, G. P. Rédei. Coefficient of variation. Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 385(2008).

    Data from CrossRef

    [1] Junwei Li, Yilin Wang, Shengjie Liu, Ting Xu, Kai Wei, Yudong Zhang, Hao Cui. Largest aperture metalens of high numerical aperture and polarization independence for long-wavelength infrared imaging. Optics Express, 30, 28882(2022).

    Peng Sun, Mengdie Zhang, Fengliang Dong, Liefeng Feng, Weiguo Chu. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared[J]. Chinese Optics Letters, 2022, 20(1): 013601
    Download Citation