• Photonics Research
  • Vol. 6, Issue 5, B74 (2018)
David Allioux1,*, Ali Belarouci1,2, Darren Hudson3, Eric Magi3..., Milan Sinobad1,4, Guillaume Beaudin2, Adrien Michon5, Neetesh Singh3, Regis Orobtchouk1 and Christian Grillet1,6|Show fewer author(s)
Author Affiliations
  • 1Université de Lyon, Institut des Nanotechnologie de Lyon, 69131 Ecully, France
  • 2Department of Electrical Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
  • 3School of Physics, University of Sydney, Sydney, NSW 2006, Australia
  • 4RMIT School of Electrical and Computer Engineering, Melbourne, VIC 3000, Australia
  • 5Université Côte d’Azur, CNRS, CRHEA, France
  • 6e-mail: Christian.grillet@ec-lyon.fr
  • show less
    DOI: 10.1364/PRJ.6.000B74 Cite this Article Set citation alerts
    David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, Christian Grillet, "Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited]," Photonics Res. 6, B74 (2018) Copy Citation Text show less
    References

    [1] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495-497(2010).

    [2] L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, C. Grillet. Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared. Opt. Express, 23, 8261-8271(2015).

    [3] L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, C. Grillet. Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses. Opt. Express, 23, 32202-32214(2015).

    [4] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, B. J. Eggleton. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [5] C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express, 20, 22609-22615(2012).

    [6] A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [7] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 6, 6310(2015).

    [8] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun., 4, 1345(2013).

    [9] C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. J. Moss. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun., 5, 3246(2014).

    [10] X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, B. Luther-Davies. Nonlinear absorption and refraction in crystalline silicon in the mid-infrared. Laser Photon. Rev., 7, 1054-1064(2013).

    [11] R. Kitamura, L. Pilon, M. Jonasz. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt., 46, 8118-8133(2007).

    [12] J. B. Casady, R. W. Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron., 39, 1409-1422(1996).

    [13] X. Lu, J. Y. Lee, S. Rogers, Q. Lin. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 22, 30826-30832(2014).

    [14] H. Sato, M. Abe, I. Shoji, J. Suda, T. Kondo. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide. J. Opt. Soc. Am. B, 26, 1892-1896(2009).

    [15] J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, M. Lipson. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett., 40, 4138-4141(2015).

    [16] S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, S. Noda. Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm. Opt. Express, 20, 14789-14796(2012).

    [17] S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, X. Chen. 4H-SiC: a new nonlinear material for midinfrared lasers. Laser Photon. Rev., 7, 831-838(2013).

    [18] F. Martini, A. Politi. Four wave mixing in 3C SiC ring resonators(2017).

    [19] W. J. Tropf, M. E. Thomas. Infrared refractive index and thermo-optic coefficient measurement at APL. Johns Hopkins APL Tech. Dig., 19, 293-297(1998).

    [20] H. Mutschke, A. Andersen, D. Clement, T. Henning, G. Peiter. Infrared properties of SiC particles. Astron. Astrophys., 345, 187-202(1999).

    [21] F. De Leonardis, B. Troia, R. A. Soref, V. M. N. Passaro. Dispersion of nonresonant third-order nonlinearities in silicon carbide. Sci. Rep., 6, 32622(2016).

    [22] D. J. Moss, E. Ghahramani, J. E. Sipe. Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb. Phys. Status Solidi C, 164, 587-604(1991).

    [23] G. L. Harris. Properties of Silicon Carbide(1995).

    [24] C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz. Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition. J. Appl. Phys., 78, 5136-5138(1995).

    [25] H. Nagasawa, K. Yagi, T. Kawahara. 3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate. J. Crys. Grow., 237–239, 1244-1249(2002).

    [26] S. Yamada, B. S. Song, T. Asano, S. Noda. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett., 99, 201102(2011).

    [27] X. Tang, K. Wongchotigul, M. G. Spencer. Optical waveguide formed by cubic silicon carbide on sapphire substrates. Appl. Phys. Lett., 58, 917-918(1991).

    [28] X. Lu, J. Y. Lee, P. X. L. Feng, Q. Lin. High Q silicon carbide microdisk resonator. Appl. Phys. Lett., 104, 181103(2014).

    [29] M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, G. Ferro. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon., 2, 14-19(2015).

    [30] D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, C. Grillet. Silicon carbide microdisk on silicon pillar probed by evanescent coupling. Conference on Lasers and Electro-Optics, SF2P.1(2016).

    [31] F. Martini, A. Politi. Linear integrated optics in 3C silicon carbide. Opt. Express, 25, 10735-10742(2017).

    [32] J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, M. Lipson. High Q SiC microresonators. Opt. Express, 21, 16882-16887(2013).

    [33] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [34] C. Grillet, E. Magi, B. J. Eggleton. Fiber taper coupling to chalcogenide microsphere modes. Appl. Phys. Lett., 92, 171109(2008).

    [35] T. Johnson. Silicon microdisk resonators for nonlinear optics and dynamics(2009).

    [36] A. Kordts, M. Pfeiffer, H. Guo, V. Brasch, T. J. Kippenberg. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 41, 452-455(2016).

    [37] M. Masi, R. Orobtchouk, G. Fan, J. M. Fedeli, L. Pavesi. Towards a realistic modelling of ultra-compact racetrack resonators. J. Lightwave Technol., 28, 3233-3242(2010).

    [38] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 137, 393-397(1989).

    [39] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 27, 1669-1671(2002).

    [40] B. E. Little, J. P. Laine. Surface-roughness-induced contradirectional coupling in ring and disk resonators. Opt. Lett., 22, 4-6(1997).

    [41] S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, A. L. Gaeta. Strong polarization mode coupling in microresonators. Opt. Lett., 39, 5134-5137(2014).

    [42] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).

    [43] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [44] S. Coen, M. Erkintalo. Universal scaling laws of Kerr frequency combs. Opt. Lett., 38, 1790-1792(2013).

    [45] S. A. Diddams. The evolving optical frequency comb. J. Opt. Soc. Am. B, 27, B51-B62(2010).

    [46] X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, D. Alquier. Evidence of electrical activity of extended defects in 3C-SiC grown on Si. Appl. Phys. Lett., 96, 142104(2010).

    [47] R. Khazaka, E. Bahette, M. Portail, D. Alquier, J. F. Michaud. Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate. Mater. Lett., 160, 28-30(2015).

    [48] H. S. Jha, P. Agarwal. Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique. J. Mater. Sci. Mater. Electron., 26, 2844-2850(2015).

    [49] X. Lu, J. Y. Lee, P. X.-L. Feng, Q. Lin. Silicon carbide microdisk resonator. Opt. Lett., 38, 1304-1306(2013).

    [50] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369-373(2012).

    CLP Journals

    [1] Qingyang Du, Jérôme Michon, Bingzhao Li, Derek Kita, Danhao Ma, Haijie Zuo, Shaoliang Yu, Tian Gu, Anuradha Agarwal, Mo Li, Juejun Hu, "Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips," Photonics Res. 8, 186 (2020)

    David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, Christian Grillet, "Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited]," Photonics Res. 6, B74 (2018)
    Download Citation