• Photonics Research
  • Vol. 6, Issue 5, B74 (2018)
David Allioux1、*, Ali Belarouci1、2, Darren Hudson3, Eric Magi3, Milan Sinobad1、4, Guillaume Beaudin2, Adrien Michon5, Neetesh Singh3, Regis Orobtchouk1, and Christian Grillet1、6
Author Affiliations
  • 1Université de Lyon, Institut des Nanotechnologie de Lyon, 69131 Ecully, France
  • 2Department of Electrical Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
  • 3School of Physics, University of Sydney, Sydney, NSW 2006, Australia
  • 4RMIT School of Electrical and Computer Engineering, Melbourne, VIC 3000, Australia
  • 5Université Côte d’Azur, CNRS, CRHEA, France
  • 6e-mail: Christian.grillet@ec-lyon.fr
  • show less
    DOI: 10.1364/PRJ.6.000B74 Cite this Article Set citation alerts
    David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, Christian Grillet. Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited][J]. Photonics Research, 2018, 6(5): B74 Copy Citation Text show less
    References

    [1] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495-497(2010).

    [2] L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, C. Grillet. Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared. Opt. Express, 23, 8261-8271(2015).

    [3] L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, C. Grillet. Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses. Opt. Express, 23, 32202-32214(2015).

    [4] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, B. J. Eggleton. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [5] C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express, 20, 22609-22615(2012).

    [6] A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [7] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 6, 6310(2015).

    [8] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun., 4, 1345(2013).

    [9] C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. J. Moss. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun., 5, 3246(2014).

    [10] X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, B. Luther-Davies. Nonlinear absorption and refraction in crystalline silicon in the mid-infrared. Laser Photon. Rev., 7, 1054-1064(2013).

    [11] R. Kitamura, L. Pilon, M. Jonasz. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt., 46, 8118-8133(2007).

    [12] J. B. Casady, R. W. Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron., 39, 1409-1422(1996).

    [13] X. Lu, J. Y. Lee, S. Rogers, Q. Lin. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 22, 30826-30832(2014).

    [14] H. Sato, M. Abe, I. Shoji, J. Suda, T. Kondo. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide. J. Opt. Soc. Am. B, 26, 1892-1896(2009).

    [15] J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, M. Lipson. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett., 40, 4138-4141(2015).

    [16] S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, S. Noda. Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm. Opt. Express, 20, 14789-14796(2012).

    [17] S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, X. Chen. 4H-SiC: a new nonlinear material for midinfrared lasers. Laser Photon. Rev., 7, 831-838(2013).

    [18] F. Martini, A. Politi. Four wave mixing in 3C SiC ring resonators(2017).

    [19] W. J. Tropf, M. E. Thomas. Infrared refractive index and thermo-optic coefficient measurement at APL. Johns Hopkins APL Tech. Dig., 19, 293-297(1998).

    [20] H. Mutschke, A. Andersen, D. Clement, T. Henning, G. Peiter. Infrared properties of SiC particles. Astron. Astrophys., 345, 187-202(1999).

    [21] F. De Leonardis, B. Troia, R. A. Soref, V. M. N. Passaro. Dispersion of nonresonant third-order nonlinearities in silicon carbide. Sci. Rep., 6, 32622(2016).

    [22] D. J. Moss, E. Ghahramani, J. E. Sipe. Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb. Phys. Status Solidi C, 164, 587-604(1991).

    [23] G. L. Harris. Properties of Silicon Carbide(1995).

    [24] C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz. Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition. J. Appl. Phys., 78, 5136-5138(1995).

    [25] H. Nagasawa, K. Yagi, T. Kawahara. 3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate. J. Crys. Grow., 237–239, 1244-1249(2002).

    [26] S. Yamada, B. S. Song, T. Asano, S. Noda. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett., 99, 201102(2011).

    [27] X. Tang, K. Wongchotigul, M. G. Spencer. Optical waveguide formed by cubic silicon carbide on sapphire substrates. Appl. Phys. Lett., 58, 917-918(1991).

    [28] X. Lu, J. Y. Lee, P. X. L. Feng, Q. Lin. High Q silicon carbide microdisk resonator. Appl. Phys. Lett., 104, 181103(2014).

    [29] M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, G. Ferro. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon., 2, 14-19(2015).

    [30] D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, C. Grillet. Silicon carbide microdisk on silicon pillar probed by evanescent coupling. Conference on Lasers and Electro-Optics, SF2P.1(2016).

    [31] F. Martini, A. Politi. Linear integrated optics in 3C silicon carbide. Opt. Express, 25, 10735-10742(2017).

    [32] J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, M. Lipson. High Q SiC microresonators. Opt. Express, 21, 16882-16887(2013).

    [33] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [34] C. Grillet, E. Magi, B. J. Eggleton. Fiber taper coupling to chalcogenide microsphere modes. Appl. Phys. Lett., 92, 171109(2008).

    [35] T. Johnson. Silicon microdisk resonators for nonlinear optics and dynamics(2009).

    [36] A. Kordts, M. Pfeiffer, H. Guo, V. Brasch, T. J. Kippenberg. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 41, 452-455(2016).

    [37] M. Masi, R. Orobtchouk, G. Fan, J. M. Fedeli, L. Pavesi. Towards a realistic modelling of ultra-compact racetrack resonators. J. Lightwave Technol., 28, 3233-3242(2010).

    [38] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 137, 393-397(1989).

    [39] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 27, 1669-1671(2002).

    [40] B. E. Little, J. P. Laine. Surface-roughness-induced contradirectional coupling in ring and disk resonators. Opt. Lett., 22, 4-6(1997).

    [41] S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, A. L. Gaeta. Strong polarization mode coupling in microresonators. Opt. Lett., 39, 5134-5137(2014).

    [42] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).

    [43] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [44] S. Coen, M. Erkintalo. Universal scaling laws of Kerr frequency combs. Opt. Lett., 38, 1790-1792(2013).

    [45] S. A. Diddams. The evolving optical frequency comb. J. Opt. Soc. Am. B, 27, B51-B62(2010).

    [46] X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, D. Alquier. Evidence of electrical activity of extended defects in 3C-SiC grown on Si. Appl. Phys. Lett., 96, 142104(2010).

    [47] R. Khazaka, E. Bahette, M. Portail, D. Alquier, J. F. Michaud. Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate. Mater. Lett., 160, 28-30(2015).

    [48] H. S. Jha, P. Agarwal. Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique. J. Mater. Sci. Mater. Electron., 26, 2844-2850(2015).

    [49] X. Lu, J. Y. Lee, P. X.-L. Feng, Q. Lin. Silicon carbide microdisk resonator. Opt. Lett., 38, 1304-1306(2013).

    [50] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369-373(2012).

    CLP Journals

    [1] Qingyang Du, Jérôme Michon, Bingzhao Li, Derek Kita, Danhao Ma, Haijie Zuo, Shaoliang Yu, Tian Gu, Anuradha Agarwal, Mo Li, Juejun Hu. Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips[J]. Photonics Research, 2020, 8(2): 186

    David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, Christian Grillet. Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited][J]. Photonics Research, 2018, 6(5): B74
    Download Citation