• Journal of Inorganic Materials
  • Vol. 35, Issue 7, 759 (2020)
Xiaoxu ZHANG1、2, Dongbin ZHU1、2、3、*, and Jinsheng LIANG1、2
Author Affiliations
  • 1Key Laboratory of Special Functional Materials for Ecological Environment and Information of Ministry of Education, Hebei University of Technology, Tianjin 300130, China
  • 2Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
  • 3School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
  • show less
    DOI: 10.15541/jim20190401 Cite this Article
    Xiaoxu ZHANG, Dongbin ZHU, Jinsheng LIANG. Progress on Hydrothermal Stability of Dental Zirconia Ceramics[J]. Journal of Inorganic Materials, 2020, 35(7): 759 Copy Citation Text show less
    References

    [1] M TURON-VINAS, M ANGLADA. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 34, 365-375(2018).

    [2] M FERRARI, A VICHI, F ZARONE. Zirconia abutments and restorations: from laboratory to clinical investigations. Dental Materials, 31, 63-76(2015).

    [3] C GAUTAM, J JOYNER, A GAUTAM et al. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 45, 19194-19215(2016).

    [4] C GARVIE R, H HANNINK R, T PASCOE R. Ceramic steel?. Nature, 258, 703-704(1975).

    [5] I DENRY, R KELLY J. State of the art of zirconia for dental applications. Dental Materials, 24, 299-307(2008).

    [6] M TURON-VINAS, M ANGLADA. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 34, 365-375(2018).

    [7] I DENRY, J HOLLOWAY. Ceramics for dental applications: a review. Materials, 3, 351-368(2010).

    [8] S NAKONIECZNY D, A ZIĘBOWICZ, K PASZENDA Z et al. Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications: a review. Biocybernetics and Biomedical Engineering, 37, 229-245(2017).

    [9] K LI R W, W CHOW T, P MATINLINNA J. Ceramic dental biomaterials and CAD/CAM technology: state of the art. Journal of Prosthodontic Research, 58, 208-216(2014).

    [10] DONG-BIN ZHU, RUI-QING CHU, XIAO-XU ZHANG et al. Progress in mechanism of ceramics inkjet printing. Journal of Mechanical Engineering, 53, 108-117(2017).

    [11] K SIVARAMAN, A CHOPRA, I NARAYAN A et al. Is zirconia a viable alternative to titanium for oral implant? a critical review. Journal of Prosthodontic Research, 62, 121-133(2018).

    [12] D DURACCIO, F MUSSANO, G FAGA M. Biomaterials for dental implants: current and future trends. Journal of Materials Science, 50, 4779-4812(2015).

    [13] K KOBAYASHI, H KUWAJIMA, T MASAKI. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics, 3-4, 489-493(1981).

    [14] T KOSMAČ, A KOCJAN. Ageing of dental zirconia ceramics. Journal of the European Ceramic Society, 32, 2613-2622(2012).

    [15] R PEREIRA G K, B VENTURINI A, T SILVESTRI et al. Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 55, 151-163(2016).

    [16] M ÖZCAN, M VOLPATO C Â, C FREDEL M. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Current Oral Health Reports, 3, 193-197(2016).

    [17] K WU Z, N LI, Z YAN J et al. Effect of hydrothermal aging on the phase mtability, microstructure and mechanical properties of dental 3Y-TZP ceramics. Applied Mechanics and Materials, 529, 251-255(2014).

    [18] V LUGHI, V SERGO. Low temperature degradation aging of zirconia: a critical review of the relevant aspects in dentistry. Denal Materials, 26, 807-820(2010).

    [19] F LANGE F, L DUNLOP G, I DAVIS B. Degradation during aging of transformationt toughened ZrO2-Y2O3 materials at 250 ℃. Journal of the American Ceramic Society, 69, 237-240(1986).

    [20] T SATO, M SHIMADA. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. Journal of the American Ceramic Society, 68, 356-356(1985).

    [21] M YOSHIMURA, T NOMA, K KAWABATA et al. Role of H2O on the degradation process of Y-TZP. Journal of Materials Science Letters, 6, 465-467(1987).

    [22] X GUO. Hydrothermal degradation mechanism of tetragonal zirconia. Journal of Materials Science, 36, 3737-3744(2001).

    [23] X GUO, T SCHOBER. Water incorporation in tetragonal zirconia. Journal of the American Ceramic Society, 87, 746-748(2004).

    [24] J LANCE M, M VOGEL E, A REITH L et al. Low-temperature aging of zirconia ferrules for optical connectors. Journal of the American Ceramic Society, 84, 2731-2733(2001).

    [25] K HARAGUCHI, N SUGANO, T NISHII et al. Phase transformation of a zirconia ceramic head after total hip arthroplasty. The Journal of Bone and Joint Surgery British volume, 83, 996-1000(2001).

    [26] J CHEVALIER, L GREMILLARD, V VIRKAR A et al. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. Journal of the American Ceramic Society, 92, 1901-1920(2009).

    [27] J CHEVALIER, B CALES, M DROUIN J. Low-temperature aging of Y-TZP ceramics. Journal of the American Ceramic Society, 82, 2150-2154(2004).

    [28] P FABBRI, C PICONI, E BURRESI et al. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dental Materials, 30, 138-142(2014).

    [29] J CHEVALIER. What future for zirconia as a biomaterial?. Biomaterials, 27, 535-543(2006).

    [30] M CATTANI-LORENTE, S DURUAL, M AMEZ-DROZ et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging. Dental Materials, 32, 394-402(2016).

    [31] C WEI, L GREMILLARD. Towards the prediction of hydrothermal ageing of 3Y-TZP bioceramics from processing parameters. Acta Materialia, 144, 245-256(2018).

    [32] O ZHIGACHEV A, V UMRIKHIN A, V RODAEV V. Theoretical description of zirconia ceramics aging kinetics. Journal of the Australian Ceramic Society, 55, 65-70(2018).

    [33] F ZHANG, M INOKOSHI, K VANMEENSEL et al. Lifetime estimation of zirconia ceramics by linear ageing kinetics. Acta Materialia, 92, 290-298(2015).

    [34] C GARVIE R, S NICHOLSON P. Phase analysis in zirconia systems. Journal of the American Ceramic Society, 55, 303-305(1972).

    [35] H TORAYA, M YOSHIMURA, S SOMIYA. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society, 67, 119-121(1984).

    [36] T KOYAMA, A KUMAMOTO, K MATSUI et al. Revealing tetragonal-to-monoclinic phase transformation in Y-TZP at an initial stage of low temperature degradation using grazing incident-angle X-ray diffraction measurement. Journal of the Ceramic Society of Japan, 126, 728-731(2018).

    [37] L GREMILLARD, S GRANDJEAN, J CHEVALIER. A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data. International Journal of Materials Research, 101, 88-94(2010).

    [38] R CLARKE D, F ADAR. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. Journal of the American Ceramic Society, 65, 284-288(1982).

    [39] G KATAGIRI, H ISHIDA, A ISHITANI et al. Direct determination by Raman microprobe of the transformation zone size in Y2O3 containing tetragonal ZrO2 polycrystals. Advances in Ceramics, 24A, 537-544(1986).

    [40] S LIM C, R FINLAYSON T, F NINIO et al. In-situ measurement of the stress-induced phase transformations in magnesia-partially-stabilized zirconia using Raman spectroscopy. Journal of the American Ceramic Society, 75, 1570-1573(1992).

    [41] K KIM B, W HAHN J, R HAN K. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. Journal of Materials Science Letters, 16, 669-671(1997).

    [42] D CASELLAS, L CUMBRERA F, F SáNCHEZ-BAJO et al. On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures. Journal of the European Ceramic Society, 21, 765-777(2001).

    [43] F LANGE F. Transformation toughening. Journal of Materials Science, 17, 225-234(1982).

    [44] Y CHEN S, Y LU H. Low-temperature ageing map for 3mol% Y2O3-ZrO2. Journal of Materials Science, 24, 453-456(1989).

    [45] L HALLMANN, P ULMER, E REUSSER et al. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. Journal of the European Ceramic Society, 32, 4091-4104(2012).

    [46] A PAUL, B VAIDHYANATHAN, P BINNER J G. Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics. Journal of the American Ceramic Society, 94, 2146-2152(2011).

    [47] J SWAB J. Low temperature degradation of Y-TZP materials. Journal of Materials Science, 26, 6706-6714(1991).

    [48] S LAWSON, C GILL, P DRANSFIELD G. Hydrothermal and corrosive degradation of Y-TZP ceramics. Key Engineering Materials, 113, 207-214(1995).

    [49] S DEVILLE, J CHEVALIER, G FANTOZZI et al. Low temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. Journal of the European Ceramic Society, 23, 2975-2982(2003).

    [50] A SMIRNOV, D KURLAND H, J GRABOW et al. Microstructure, mechanical properties and low temperature degradation resistance of 2Y-TZP ceramic materials derived from nanopowders prepared by laser vaporization. Journal of the European Ceramic Society, 35, 2685-2691(2015).

    [51] U SUTHARSINI, M THANIHAICHELVAN, H TING C et al. Effect of two-step sintering on the hydrothermal ageing resistance of tetragonal zirconia polycrystals. Ceramics International, 43, 7594-7599(2017).

    [52] A PRESENDA, D SALVADOR M, R MORENO et al. Hydrothermal degradation behavior of Y-TZP ceramics sintered by nonconventional microwave technology. Journal of the American Ceramic Society, 98, 3680-3689(2015).

    [53] R CHINTAPALLI, A MESTRA, G MARRO F et al. stability of nanocrystalline spark plasma sintered 3Y-TZP. Materials, 3, 800-814(2010).

    [54] C WEI, L GREMILLARD. Surface treatment methods for mitigation of hydrothermal ageing of zirconia. Journal of the European Ceramic Society, 39, 4322-4329(2019).

    [55] S DEVILLE, J CHEVALIER, L GREMILLARD. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials, 27, 2186-2192(2006).

    [56] M INOKOSHI, K VANMEENSEL, F ZHANG et al. Aging resistance of surface-treated dental zirconia. Dental Materials, 31, 182-194(2015).

    [57] C WEI, L GREMILLARD. The influence of stresses on ageing kinetics of 3Y- and 4Y- stabilized zirconia. Journal of the European Ceramic Society, 38, 753-760(2018).

    [58] C GILES J. Préparation par reaction à l’état solide et structure des oxynitrures de zirconium. Bulletin de la Société Chimique de France, 22, 2118-2122(1962).

    [59] J CHUNG T, S SONG H, H KIM G et al. Microstructure and phase stability of yttria-doped tetragonal zirconia polycrystals heat treated in nitrogen atmosphere. Journal of the American Ceramic Society, 80, 2607-2612(1997).

    [60] J VALLE, A MESTRA, G MARRO F et al. Mechanical properties and resistance to low temperature degradation of surface nitrided 3Y-TZP. Journal of the European Ceramic Society, 33, 3145-3155(2013).

    [61] C HÜBSCH, P DELLINGER, J MAIER H et al. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating. Acta Biomaterialia, 11, 488-493(2015).

    [62] S SIVAKUMAR, L TEOW H, R SINGH et al. The effect of iron oxide on the mechanical and ageing properties of Y-TZP ceramic. Key Engineering Materials, 701, 225-229(2016).

    [63] R MAURYA, A GUPTA, S OMAR et al. Effect of sintering on mechanical properties of ceria reinforced yttria stabilized zirconia. Ceramics International, 42, 11393-11403(2016).

    [64] M KHAN M, S RAMESH, T BANG L et al. Effect of copper oxide and manganese oxide on properties and low temperature degradation of sintered Y-TZP ceramic. Journal of Materials Engineering and Performance, 23, 4328-4335(2014).

    [65] H PIVA D, H PIVA R, C ROCHA M et al. Resistance of InO1.5-stabilized tetragonal zirconia polycrystals to low-temperature degradation. Materials Letters, 163, 226-230(2016).

    [66] B LEE H, B PRINZF, W CAI. Atomistic simulations of grain boundary segregation in nanocrystalline yttria stabilized zirconia and gadolinia doped ceria solid oxide electrolytes. Acta Materialia, 61, 3872-3887(2013).

    [67] T YOKOI, M YOSHIYA, H YASUDA. On modeling of grain boundary segregation in aliovalent cation doped ZrO2: critical factors in site-selective point defect occupancy. Scripta Materialia, 102, 91-94(2015).

    [68] F ZHANG, M BATUK, J HADERMANN et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: grain boundary segregation and oxygen vacancy annihilation. Acta Materialia, 106, 48-58(2016).

    [69] F ZHANG, K VANMEENSEL, M INOKOSHI et al. Critical influence of alumina content on the low temperature degradation of (2-3)mol% yttria-stabilized TZP for dental restorations. Journal of the European Ceramic Society, 35, 741-750(2015).

    [70] Q JING, J BAO, F RUAN et al. High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications. Ceramics International, 45, 6066-6073(2019).

    [71] F ZHANG, K VANMEENSEL, M BATUK et al. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomaterials, 16, 215-222(2015).

    [72] T NAKAMURA, Y NAKANO, H USAMI et al. Translucency and low-temperature degradation of silica-doped zirconia: a pilot study. Dental Materials Journal, 35, 571-577(2016).

    [73] L GREMILLARD, T EPICIER, J CHEVALIER et al. Microstructural study of silica-doped zirconia ceramics. Acta Materialia, 48, 4647-4652(2000).

    [74] A SAMODUROVA, A KOCJAN, V SWAIN M et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomaterials, 11, 477-487(2015).

    [75] E MOHAMED, M TAHERI, M MEHRJOO et al. In vitro biocompatibility and ageing of 3Y-TZP/CNTs composites. Ceramics International, 41, 12773-12781(2015).

    [76] A MORALES-RODRIGUEZ, R POYATO, F GUTIERREZ-MORA et al. The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals. Ceramics International, 44, 17716-17723(2018).

    [77] YAN-JUN SONG, DONG-BIN ZHU, JIN-SHENG LIANG et al. Enhanced mechanical properties of 3mol% Y2O3 stabilized tetragonal ZrO2, incorporating tourmaline particles. Ceramics International, 44, 15550-15556(2018).

    [78] DONG-BIN ZHU, YAN-JUN SONG, JIN-SHNEG LIANG et al. Progress of toughness in dental zirconia ceramics. Journal of Inorganic Materials, 33, 363-372(2018).

    Xiaoxu ZHANG, Dongbin ZHU, Jinsheng LIANG. Progress on Hydrothermal Stability of Dental Zirconia Ceramics[J]. Journal of Inorganic Materials, 2020, 35(7): 759
    Download Citation