• Acta Optica Sinica
  • Vol. 39, Issue 6, 0606001 (2019)
Wei Wang1、2、*, Ying Tang1, Xiongxing Zhang1、2, Haibin Chen1、2, Zilong Guo1, and Kening Wang1
Author Affiliations
  • 1 School of Optoelectronics Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
  • 2 Shaanxi Key Laboratory of Integrated and Intelligent Navigation, Xi'an, Shaanxi 710068, China
  • show less
    DOI: 10.3788/AOS201939.0606001 Cite this Article Set citation alerts
    Wei Wang, Ying Tang, Xiongxing Zhang, Haibin Chen, Zilong Guo, Kening Wang. Elliptical-Fitting Cavity Length Demodulation Algorithm for Compound Fiber-Optic Fabry-Perot Pressure Sensor with Short Cavity[J]. Acta Optica Sinica, 2019, 39(6): 0606001 Copy Citation Text show less
    References

    [1] Lee C E, Taylor H F. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source[J]. Journal of Lightwave Technology, 9, 129-134(1991). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=64932

         Lee C E, Taylor H F. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source[J]. Journal of Lightwave Technology, 9, 129-134(1991). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=64932

    [2] Kao T W, Taylor H F. High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor[J]. Optics Letters, 21, 615-617(1996). http://www.opticsinfobase.org/abstract.cfm?uri=ol-21-8-615

         Kao T W, Taylor H F. High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor[J]. Optics Letters, 21, 615-617(1996). http://www.opticsinfobase.org/abstract.cfm?uri=ol-21-8-615

    [3] Jiang M Z, Gerhard E. A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer[J]. Sensors and Actuators A: Physical, 88, 41-46(2001). http://www.sciencedirect.com/science/article/pii/S0924424700004945

         Jiang M Z, Gerhard E. A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer[J]. Sensors and Actuators A: Physical, 88, 41-46(2001). http://www.sciencedirect.com/science/article/pii/S0924424700004945

    [4] Chen Q Q, Tang Y, Wang K N et al. Characteristic analysis of correlation interference signals in optical wedge type fiber Fabry-Perot sensors[J]. Laser & Optoelectronics Progress, 55, 110603(2018).

         Chen Q Q, Tang Y, Wang K N et al. Characteristic analysis of correlation interference signals in optical wedge type fiber Fabry-Perot sensors[J]. Laser & Optoelectronics Progress, 55, 110603(2018).

    [5] Guo Z H, Li Y H, Yang H et al. Tunable Fabry-Perot optical filter based on micro-electro mechanical system[J]. Chinese Journal of Lasers, 44, 0604007(2017).

         Guo Z H, Li Y H, Yang H et al. Tunable Fabry-Perot optical filter based on micro-electro mechanical system[J]. Chinese Journal of Lasers, 44, 0604007(2017).

    [6] Li M, Wang M, Li H P. Optical MEMS pressure sensor based on Fabry-Perot interferometry[J]. Optics Express, 14, 1497-1504(2006). http://www.opticsinfobase.org/abstract.cfm?id=88061

         Li M, Wang M, Li H P. Optical MEMS pressure sensor based on Fabry-Perot interferometry[J]. Optics Express, 14, 1497-1504(2006). http://www.opticsinfobase.org/abstract.cfm?id=88061

    [7] Zhang J F, Zhuang X Y, Wang W M et al. Structure design and analysis of a new type MEMS Fabry-Perot filter[J]. Acta Optica Sinica, 32, 0822005(2012).

         Zhang J F, Zhuang X Y, Wang W M et al. Structure design and analysis of a new type MEMS Fabry-Perot filter[J]. Acta Optica Sinica, 32, 0822005(2012).

    [8] Zheng Z X, Huang Y Q. Diaphragm type optical fiber MEMS pressure sensors based on F-P cavity interference[J]. Acta Photonica Sinica, 41, 1488-1492(2012).

         Zheng Z X, Huang Y Q. Diaphragm type optical fiber MEMS pressure sensors based on F-P cavity interference[J]. Acta Photonica Sinica, 41, 1488-1492(2012).

    [9] Jiang Y. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors[J]. IEEE Photonics Technology Letters, 20, 75-77(2008). http://ieeexplore.ieee.org/document/4408667/

         Jiang Y. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors[J]. IEEE Photonics Technology Letters, 20, 75-77(2008). http://ieeexplore.ieee.org/document/4408667/

    [10] Han M, Zhang Y, Shen F B et al. Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors[J]. Optics Letters, 29, 1736-1738(2004). http://www.europepmc.org/abstract/MED/15352354

         Han M, Zhang Y, Shen F B et al. Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors[J]. Optics Letters, 29, 1736-1738(2004). http://www.europepmc.org/abstract/MED/15352354

    [11] Xie J H, Wang F Y, Pan Y et al. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors[J]. Optical Fiber Technology, 22, 1-6(2015). http://www.sciencedirect.com/science/article/pii/S1068520014001655

         Xie J H, Wang F Y, Pan Y et al. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors[J]. Optical Fiber Technology, 22, 1-6(2015). http://www.sciencedirect.com/science/article/pii/S1068520014001655

    [12] Sun X Z, Chen H X, Gu P F. Characteristic analysis of multi-cavities Fabry-Perot filters with attenuation[J]. Acta Optica Sinica, 25, 970-975(2005).

         Sun X Z, Chen H X, Gu P F. Characteristic analysis of multi-cavities Fabry-Perot filters with attenuation[J]. Acta Optica Sinica, 25, 970-975(2005).

    [13] Chen M R, Bi S W, Dou X B. Transmission characteristics of two-cavity Fabry-Perot structure[J]. High Power Laser and Particle Beams, 22, 1870-1874(2010).

         Chen M R, Bi S W, Dou X B. Transmission characteristics of two-cavity Fabry-Perot structure[J]. High Power Laser and Particle Beams, 22, 1870-1874(2010).

    [14] Gao H C, Jiang Y, Zhang L C et al. Five-step phase-shifting white-light interferometry for the measurement of fiber optic extrinsic Fabry-Perot interferometers[J]. Applied Optics, 57, 1168-1173(2018). http://www.ncbi.nlm.nih.gov/pubmed/29469861

         Gao H C, Jiang Y, Zhang L C et al. Five-step phase-shifting white-light interferometry for the measurement of fiber optic extrinsic Fabry-Perot interferometers[J]. Applied Optics, 57, 1168-1173(2018). http://www.ncbi.nlm.nih.gov/pubmed/29469861

    [15] Ahn S J, Rauh W, Warnecke H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 34, 2283-2303(2001). http://www.sciencedirect.com/science/article/pii/S0031320300001527

         Ahn S J, Rauh W, Warnecke H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 34, 2283-2303(2001). http://www.sciencedirect.com/science/article/pii/S0031320300001527

    [16] Xu A P, Wang Z Y, Kong D L et al. A new ellipse fitting method of the minimum differential-mode noise in the atom interference gravimeter[J]. Chinese Physics B, 27, 070203(2018). http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201807024.htm

         Xu A P, Wang Z Y, Kong D L et al. A new ellipse fitting method of the minimum differential-mode noise in the atom interference gravimeter[J]. Chinese Physics B, 27, 070203(2018). http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201807024.htm

    [17] Jiang L J, Jiang J F, Liu T G et al. Demodulation of cascade optical fiber Fabry-Perot pressure sensor[J]. Acta Photonica Sinica, 41, 283-287(2012).

         Jiang L J, Jiang J F, Liu T G et al. Demodulation of cascade optical fiber Fabry-Perot pressure sensor[J]. Acta Photonica Sinica, 41, 283-287(2012).

    [18] Liu F W, Wu Y Q, Wu F[J]. Correction of random phase-shifts errors based on Lissajous calibration Opto-Electronic Engineering, 2015, 89-94.

         Liu F W, Wu Y Q, Wu F[J]. Correction of random phase-shifts errors based on Lissajous calibration Opto-Electronic Engineering, 2015, 89-94.

    [19] Guo R H, Li J X, Zhu R H et al. Wavelength-tuned phase-shifting calibration based on the Lissajous figures technique[J]. Optical Technique, 36, 200-204(2010).

         Guo R H, Li J X, Zhu R H et al. Wavelength-tuned phase-shifting calibration based on the Lissajous figures technique[J]. Optical Technique, 36, 200-204(2010).

    [20] Feng S S. Reseach on matrix inversion in massive MIMO systems[D]. Chengdu: University of Electronic Science and Technology of China(2016).

         Feng S S. Reseach on matrix inversion in massive MIMO systems[D]. Chengdu: University of Electronic Science and Technology of China(2016).

    [21] Li Y Q. Research and implementation of matrix inversion in Massive MIMO[D]. Chengdu: University of Electronic Science and Technology of China(2016).

         Li Y Q. Research and implementation of matrix inversion in Massive MIMO[D]. Chengdu: University of Electronic Science and Technology of China(2016).

    [22] Xia J. A comparative study of ellipses fitting methods[D]. Guangzhou: Jinan University(2007).

         Xia J. A comparative study of ellipses fitting methods[D]. Guangzhou: Jinan University(2007).

    [23] Shen B, Hua Q, Wang Q et al. Linear signal detection based on simplified matrix inversion in massive MIMO systems[J]. Journal of Beijing University of Posts and Telecommunications, 39, 77-81(2016).

         Shen B, Hua Q, Wang Q et al. Linear signal detection based on simplified matrix inversion in massive MIMO systems[J]. Journal of Beijing University of Posts and Telecommunications, 39, 77-81(2016).

    Wei Wang, Ying Tang, Xiongxing Zhang, Haibin Chen, Zilong Guo, Kening Wang. Elliptical-Fitting Cavity Length Demodulation Algorithm for Compound Fiber-Optic Fabry-Perot Pressure Sensor with Short Cavity[J]. Acta Optica Sinica, 2019, 39(6): 0606001
    Download Citation