• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1714004 (2022)
Shaodong Song1, Yanyan Wang1、*, Linsen Shu1、2, and Yajuan He1
Author Affiliations
  • 1College of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi , China
  • 2Shaanxi Key Laboratory of Industrial Automation, Hanzhong 723001, Shaanxi , China
  • show less
    DOI: 10.3788/LOP202259.1714004 Cite this Article Set citation alerts
    Shaodong Song, Yanyan Wang, Linsen Shu, Yajuan He. Optimization of 6061 Aluminum Alloy Laser Welding Process Based on RSM-PSO[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1714004 Copy Citation Text show less
    References

    [1] Wang H X, Zhang J Y, Wang B et al. Influence of surface enhanced treatment on microstructure and fatigue performance of 6005A aluminum alloy welded joint[J]. Journal of Manufacturing Processes, 60, 563-572(2020).

    [2] Li Y W, Zou W F, Lee B et al. Research progress of aluminum alloy welding technology[J]. The International Journal of Advanced Manufacturing Technology, 109, 1207-1218(2020).

    [3] Xie C J, Yang S L, Liu H B et al. Microstructures and mechanical properties of 7050 ultrahigh-strength aluminum alloy joints by laser welding[J]. Laser & Optoelectronics Progress, 55, 031403(2018).

    [4] Liu J X, Shen J, Li X W et al. Microstructure and fatigue properties of friction stir welded 6005A-T5 aluminum alloy[J]. Materials Reports, 35, 2092-2097(2021).

    [5] Xu C C, Li J, Xiang H L et al. Simulation analysis of mechanical properties and ductile fracture failure of 6063 aluminum alloy welded joint[J]. Journal of Plasticity Engineering, 28, 110-117(2021).

    [6] Kumar P R, Nandhakumar S, Seenivasan S et al. Parametric optimization of friction stir spot welded aluminium AA6063 alloy joints[J]. Materials Today: Proceedings, 37, 2897-2902(2021).

    [7] Tang Y B, Sun H B, Yu H D et al. Friction stir welding deformation behaviors of large thin-walled aluminium alloy structures with different clamping restraints[J]. China Mechanical Engineering, 30, 1881-1889(2019).

    [8] Ding J K, Song J L, Meng D Y et al. Comparison of microstructure and properties of welded joints in tungsten & metal inert gas welding of 2219 thick plate aluminum alloy[J]. Aerospace Materials & Technology, 50, 93-97(2020).

    [9] Miao S F, Liu J X, Liu Y D et al. Test analysis on influence of welding defects on fatigue life of aluminum alloy plate frames[J]. Chinese Journal of Ship Research, 14, 95-101(2019).

    [10] Li J, Xiang Y H. Influence of cooling method on joint properties of thin aluminum alloy by friction stir welding[J]. Nonferrous Metals Engineering, 6, 6-8(2016).

    [11] Wang L, Xu X Z, Wang K H et al. Microstructures and mechanical properties of fiber laser beam welded 7A52 alloy joint[J]. Transactions of the China Welding Institution, 41, 28-31, 37, 98(2020).

    [12] Ding Y R, Chen F R, Yang F et al. Analyzing the influence of laser welding parameters on the welding quality of 7075 aluminum alloy by response surface methodology[J]. Materials Reports, 35, 2103-2108, 2114(2021).

    [13] Wang X B, Li X M, Yue Z et al. Experiments on laser brazing process parameters of automobile roof[J]. Applied Laser, 40, 821-824(2020).

    [14] Shu F H, Liang F. Welding process optimization for aluminum alloy sheet based on relation[J]. Special Casting & Nonferrous Alloys, 36, 580-583(2016).

    [15] Deng D W, Lü J, Ma Y S et al. Processing parameters optimization, microstructures and properties of laser welded FV520B steel[J]. Materials Reports, 35, 8127-8133(2021).

    [16] Liang W, Xia Y, Feng W et al. Investigations on high-precision methods to measure and predict welding deformation[J]. Journal of Mechanical Engineering, 52, 65-70(2016).

    [17] Jia Z H, Wan X H, Guo D L. Optimization of UHFP-GTAW process based on response surface method[J]. Transactions of the China Welding Institution, 41, 90-96, 102(2020).

    Shaodong Song, Yanyan Wang, Linsen Shu, Yajuan He. Optimization of 6061 Aluminum Alloy Laser Welding Process Based on RSM-PSO[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1714004
    Download Citation