• Matter and Radiation at Extremes
  • Vol. 6, Issue 2, 026903 (2021)
Zixiang Yan1, Hao Liu2, Xinyu Zhang3, Guoli Ren4, Jie Liu3、5, Wei Kang3、a), Weiyan Zhang3、6, and Xiantu He3、4
Author Affiliations
  • 1HEDPS, Center for Applied Physics and Technology, and School of Physics, Peking University, Beijing 100871, China
  • 2Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 3HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
  • 4Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • 5Graduate School, China Academy of Engineering Physics, Beijing 100193, China
  • 6China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.1063/5.0030906 Cite this Article
    Zixiang Yan, Hao Liu, Xinyu Zhang, Guoli Ren, Jie Liu, Wei Kang, Weiyan Zhang, Xiantu He. Dynamics of particles near the surface of a medium under ultra-strong shocks[J]. Matter and Radiation at Extremes, 2021, 6(2): 026903 Copy Citation Text show less
    References

    [1] P. A. Sterne, P. M. Celliers, M. Millot et al. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility. Phys. Rev. B, 97, 144108(2018).

    [2] J. Zheng, Q. F. Chen, Y. J. Gu et al. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 Gpa. Phys. Rev. B, 95, 224104(2017).

    [3] A. L. Kritcher, D. C. Swift, T. Doppner et al. Absolute equation-of-state measurement for polystyrene from 25 to 60 Mbar using a spherically converging shock wave. Phys. Rev. Lett., 121, 025001(2018).

    [4] C. A. McCoy, M. C. Gregor, D. N. Polsin et al. Shock-wave equation-of-state measurements in fused silica up to 1600 Gpa. J. Appl. Phys., 119, 215901(2016).

    [5] Z. G. Li, Q. F. Chen, Y. J. Gu et al. Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 Gpa: Validating the equation of state calculated from first principles. Phys. Rev. B, 98, 064101(2018).

    [6] H. Stabile, D. Batani et al. Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett., 92, 065503(2004).

    [7] A. Balducci, D. Batani et al. Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B, 61, 9287(2000).

    [8] A. Morelli, D. Batani et al. Equation of state data for iron at pressure beyond 10 mbar. Phys. Rev. Lett., 88, 235502(2002).

    [9] K. A. Tanaka, N. Ozaki et al. Gekko/hiper-driven shock waves and equation-of-state measurements at ultrahigh pressures. Phys. Plasmas, 11, 1600(2004).

    [10] N. Ozaki, T. Ono et al. Equation-of-state measurements for polystyrene at multi-tpa pressures in laser direct-drive experiments. Phys. Plasmas, 12, 124503(2005).

    [11] K. Jakubowska et al. Theoretical and experimental refraction index of shock compressed and pre-compressed water in the megabar pressure range. Eur. Phys. Lett., 126, 56001(2019).

    [12] M. Koenig et al. Relative consistency of equation of state by laser driven shock waves. Phys. Rev. Lett., 74, 2260(1995).

    [13] T. Doppner, D. C. Swift, A. L. Kritcher et al. A measurement of the equation of state of carbon envelopes of white dwarfs. Nature, 584, 51(2020).

    [14] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [15] Y. Liu, Z. Fan, B. Liu et al. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. Matter Radiat. Extremes, 2, 3(2017).

    [16] E. M. Campbell, T. C. Sangster, V. N. Goncharov et al. Laser-direct drive program: Promise, challenge and path forward. Matter Radiat. Extremes, 2, 37(2017).

    [17] M. E. Martin, J. Nilsen, A. L. Kritcher et al. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018410(2020).

    [18] J. A. Gaffney, P. Arnault, S. X. Hu et al. A review of equation-of-state models for inertial confinement fusion materials. High Energy Density Phys., 28, 7(2018).

    [19] Z. F. Fan, J. W. Li, X. T. He et al. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion. Phys. Plasmas, 23, 082706(2016).

    [20] Y. P. Raizer, Y. B. Zel’dovich. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(1967).

    [21] J. M. Walsh, R. H. Christian. Equation of state of metals from shock wave measurements. Phys. Rev., 97, 1544-1556(1955).

    [22] J. M. Walsh, M. H. Rice, R. G. Mcqueen et al. Shock-wave compressions of twenty-seven metals. Equations of state of metals. Phys. Rev., 108, 196-216(1957).

    [23] G. Huser, A. Benuzzi-Mounaix, M. Koenig et al. Absolute equation of state measurements of iron using laser driven shocks. Phys. Plasmas, 9, 2466(2002).

    [24] K. K. Krupnikov, L. V. Al’tshuler, B. N. Ledenev et al. Dynamic compressibility and equation of state of iron under high pressure. Sov. Phys. JETP., 7, 606(1958).

    [25] L. V. Al’tshuler, S. B. Kormer, A. A. Bakanova et al. Equation of state for aluminum, copper, and lead in the high pressure region. Sov. Phys. JETP., 11, 573(1960).

    [26] R. E. Hollenbach, L. M. Baker. Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys., 43, 4669-4675(1972).

    [27] D. R. Goosman. Analysis of the laser velocity interferometer. J. Appl. Phys., 46, 3516-3524(1975).

    [28] P. M. Celliers, G. W. Collins, L. B. D. Silva et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry. Appl. Phys. Lett., 73, 1320-1322(1998).

    [29] D. K. Bradley, G. W. Collins, P. M. Celliers et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum., 75, 4916-4929(2004).

    [30] W. F. Hemsing. Velocity sensing interferometer (VISAR) modification. Rev. Sci. Instrum., 50, 73-78(1979).

    [31] G. W. Collins, P. M. Celliers, L. B. D. Silva et al. Shock-induced transformation of liquid deuterium into a metallic fluid. Phys. Rev. Lett., 84, 5564-5567(2000).

    [32] D. G. Hicks, G. Collins, P. M. Celliers et al. Shock-induced transformation of Al2O3 and LiF into semiconducting liquids. Phys. Rev. Lett., 91, 035502(2003).

    [33] P. Loubeyre, P. M. Celliers, D. G. Hicks et al. Coupling static and dynamic compressions: First measurements in dense hydrogen. High Pressure Res., 24, 25-31(2004).

    [34] T. R. Boehly, W. Seka, V. N. Goncharov et al. Velocity and timing of multiple spherically converging shock waves in liquid deuterium. Phys. Rev. Lett., 106, 195001(2011).

    [35] S. Zhang, B. Militzer, A. Lazicki et al. Equation of state of boron nitride combining computation, modeling, and experiment. Phys. Rev. B, 99, 165103(2019).

    [36] D. H. Dolan. What does ‘velocity’ interferometry really measure. AIP Conf. Proc., 1159, 589(2009).

    [37] B. L. Holian, E. Salomons, C. W. Patterson, M. Mareschal. Modeling shock wave in an ideal gas: Going beyond the Navier-Stokes level. Phys. Rev. E., 47, R24-R27(1993).

    [38] Q. Zhang, H. Liu, W. Kang et al. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium. Front. Phys., 11, 115206(2016).

    [39] S. Plimpton, P. Crozier, A. Thompson. Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator(2007).

    [40] L. Verlet. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159, 98-103(1967).

    [41] R. A. Aziz, J. S. Carley, V. P. S. Nain et al. An accurate intermolecular potential for helium. J. Chem. Phys., 70, 4330(1979).

    [42] M. Koenig, A. Benuzzi, B. Faral et al. Preheating study by reflectivity measurements in laser-driven shocks. Phys. Plasmas, 5, 2410(1998).

    [43] P. Gibbon. Short Pulse Laser Interactions with Matter(2005).

    [44] H. Liu, W. Kang, Y. Zhang et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Phys. Rev. E., 95, 023201(2017).

    [45] G. A. Baker. Essentials of Padé Approximants(1975).

    Zixiang Yan, Hao Liu, Xinyu Zhang, Guoli Ren, Jie Liu, Wei Kang, Weiyan Zhang, Xiantu He. Dynamics of particles near the surface of a medium under ultra-strong shocks[J]. Matter and Radiation at Extremes, 2021, 6(2): 026903
    Download Citation