• Acta Optica Sinica
  • Vol. 38, Issue 6, 0601004 (2018)
Chaojun Niu, Fang Lu, and Xiang'e Han*
Author Affiliations
  • School of Physics & Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • show less
    DOI: 10.3788/AOS201838.0601004 Cite this Article Set citation alerts
    Chaojun Niu, Fang Lu, Xiang'e Han. Propagation Properties of Gaussian Array Beams Transmitted in Oceanic Turbulence Simulated by Phase Screen Method[J]. Acta Optica Sinica, 2018, 38(6): 0601004 Copy Citation Text show less
    Sketch map of multi-layer phase screen method
    Fig. 1. Sketch map of multi-layer phase screen method
    Schematic of different beam arrangements. (a) 3×3 beam array with rectangle distribution; (b) 7 beam array with radial distribution; (c) single Gaussian beam
    Fig. 2. Schematic of different beam arrangements. (a) 3×3 beam array with rectangle distribution; (b) 7 beam array with radial distribution; (c) single Gaussian beam
    Average radii of beams under different turbulence conditions. (a) Z=10 m, ε=10-6 m2·s-3, ω=-2,η=0.001 m, λ=532 nm; (b) Z=10 m, ε=10-6 m2·s-3, χT=10-6 K2·s-1, η=0.001 m, λ=532 nm; (c) ε=10-6 m2·s-3, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm; (d) Z=10 m, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm
    Fig. 3. Average radii of beams under different turbulence conditions. (a) Z=10 m, ε=10-6 m2·s-3, ω=-2,η=0.001 m, λ=532 nm; (b) Z=10 m, ε=10-6 m2·s-3, χT=10-6 K2·s-1, η=0.001 m, λ=532 nm; (c) ε=10-6 m2·s-3, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm; (d) Z=10 m, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm
    Distribution of spot centroid
    Fig. 4. Distribution of spot centroid
    Standard deviation of spot centroid wander. (a) Z=10 m, ε=10-6 m2·s-3, ω=-2, η=0.001 m, λ=532 nm; (b) Z=10 m, ε=10-6 m2·s-3, χT=10-6 K2·s-1, η=0.001 m, λ=532 nm; (c) ε=10-6 m2·s-3, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm; (d) Z=10 m, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm
    Fig. 5. Standard deviation of spot centroid wander. (a) Z=10 m, ε=10-6 m2·s-3, ω=-2, η=0.001 m, λ=532 nm; (b) Z=10 m, ε=10-6 m2·s-3, χT=10-6 K2·s-1, η=0.001 m, λ=532 nm; (c) ε=10-6 m2·s-3, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm; (d) Z=10 m, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm
    Numerical simulation of on-axis scintillation index of beam array. (a) Z=10 m, ε=10-6 m2·s-3, ω=-2, η=0.001 m, λ=532 nm; (b) Z=10 m, ε=10-6 m2·s-3, χT=10-6 K2·s-1, η=0.001 m, λ=532 nm; (c) ε=10-6 m2·s-3, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm; (d) Z=10 m, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm
    Fig. 6. Numerical simulation of on-axis scintillation index of beam array. (a) Z=10 m, ε=10-6 m2·s-3, ω=-2, η=0.001 m, λ=532 nm; (b) Z=10 m, ε=10-6 m2·s-3, χT=10-6 K2·s-1, η=0.001 m, λ=532 nm; (c) ε=10-6 m2·s-3, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm; (d) Z=10 m, χT=10-6 K2·s-1, ω=-2, η=0.001 m, λ=532 nm
    Chaojun Niu, Fang Lu, Xiang'e Han. Propagation Properties of Gaussian Array Beams Transmitted in Oceanic Turbulence Simulated by Phase Screen Method[J]. Acta Optica Sinica, 2018, 38(6): 0601004
    Download Citation