• Journal of Innovative Optical Health Sciences
  • Vol. 4, Issue 1, 9 (2011)
ALEXEY N. BASHKATOV1、*, ELINA A. GENINA1, and VALERY V. TUCHIN1、2
Author Affiliations
  • 1Institute of Optics and Biophotonics Saratov State University, Saratov 410012, Russia
  • 2Institute of Precise Mechanics and Control of RAS, Saratov 410028, Russia
  • show less
    DOI: 10.1142/s1793545811001319 Cite this Article
    ALEXEY N. BASHKATOV, ELINA A. GENINA, VALERY V. TUCHIN. OPTICAL PROPERTIES OF SKIN, SUBCUTANEOUS, AND MUSCLE TISSUES: A REVIEW[J]. Journal of Innovative Optical Health Sciences, 2011, 4(1): 9 Copy Citation Text show less
    References

    [1] G. J. Mueller, D. H. Sliney (eds.), Dosimetry of Laser Radiation in Medicine and Biology, IS5, SPIE Press, Bellingham, WA (1989).

    [2] W.-F. Cheong, S. A. Prahl, A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electr. 26, 2166-2185 (1990).

    [3] F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, London (1990).

    [4] A. J. Welch, M. C. J. van Gemert (eds.), Tissue Optics, Academic Press, New York (1992).

    [5] P. van der Zee, "Methods for measuring the optical properties of tissue samples in the visible and nearinfrared wavelength range," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. Alfano, et al. (eds.), pp. 166 192, SPIE Press, Institute Series, Vol. 11, Bellingham, WA (1993).

    [6] G. Müller, A. Roggan (eds.), Laser-Induced Interstitial Thermotherapy, PM25, SPIE Press, Bellingham, WA (1995).

    [7] M. H. Niemz, Laser-Tissue Interactions. Fundamentals and Applications, 3rd ed., Springer-Verlag, Berlin (2007).

    [8] V. V. Tuchin, "Light scattering study of tissues," Phys. — Uspekhi 40, 495-515 (1997).

    [9] V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics, PM107, SPIE Press, Bellingham, WA (2002).

    [10] T. Vo-Dinh (ed.), Biomedical Photonics Handbook, CRC Press, Boca Raton (2003).

    [11] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press, Bellingham, WA (2007).

    [12] V. V. Tuchin, "Optical spectroscopy of biological materials," in Encyclopedia of Applied Spectroscopy, D. L. Andrews (ed.), pp. 555-626, Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim (2009).

    [13] A. Roggan, D. Schadel, U. Netz, J.-P. Ritz, C. T. Germer, G. Müller, "The effect of preparation technique on the optical parameters of biological tissue," Appl. Phys. B: Lasers Opt. 69, 445-453 (1999).

    [14] E. A. Genina, A. N. Bashkatov, V. I. Kochubey, V. V. Tuchin, "Effect of storage conditions of skin samples on their optical characteristics," Opt. Spectrosc. 107, 934-938 (2009).

    [15] E. Chan, T. Menovsky, A. J. Welch, "Effects of cryogenic grinding on soft-tissue optical properties," Appl. Opt. 35, 4526-4532 (1996).

    [16] E. K. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996).

    [17] I. F. Cilesiz, A. J. Welch, "Light dosimetry: Effects of dehydration and thermal damage on the optical properties of the human aorta," Appl. Opt. 32, 477-487 (1993).

    [18] D. Zhu, Q. Luo, J. Cen, "Effects of dehydration on the optical properties of in vitro porcine liver," Lasers Surg. Med. 33, 226-231 (2003).

    [19] S. L. Jacques, "Origins of tissue optical properties in the UVA, visible and NIR regions," in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto (eds.), pp. 364-371, OSA TOPS: Optical Society of America, Vol. 2, Washington, DC (1996).

    [20] A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE Press, New York (1997).

    [21] M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press (2002).

    [22] C. Chandrasekhar, Radiative Transfer, Dover, Toronto, Ontario (1960).

    [23] L. G. Henyey, J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).

    [24] G. Yoon, A. J. Welch, M. Motamedi, C. J. Martinus, M. J. C. van Gemert, "Development and application of three-dimensional light distribution model for laser irradiated tissue," IEEE J. Quantum Electron. 23, 1721-1733 (1987).

    [25] M. Chandra, K. Vishwanath, G. D. Fichter, E. Liao, S. J. Hollister, M.-A. Mycek, "Quantitative molecular sensing in biological tissues: An approach to non-invasive optical characterization," Opt. Exp. 14, 6157-6171 (2006).

    [26] Y.-C. Chen, J. L. Ferracane, S. A. Prahl, "A pilot study of a simple photon migration model for predicting depth of cure in dental composite," Dent. Mater. 21, 1075-1086 (2005).

    [27] G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, "The effect of light losses in double integrating spheres on optical properties estimation," IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).

    [28] S. C. Gebhart, W.-C. Lin, A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006).

    [29] J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt. 32, 399-410 (1993).

    [30] S. A. Prahl, M. J. C. van Gemert, A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993).

    [31] J. Qu, C. MacAulay, S. Lam, B. Palcic, "Optical properties of normal and carcinomatous bronchial tissue," Appl. Opt. 33, 7397-7405 (1994).

    [32] D. K. Sardar, M. L. Mayo, R. D. Glickman, "Optical characterization of melanin," J. Biomed. Opt. 6, 404-411 (2001).

    [33] D. K. Sardar, F. S. Salinas, J. J. Perez, A. T. C. Tsin, "Optical characterization of bovine retinal tissues," J. Biomed. Opt. 9, 624-631 (2004).

    [34] D. K. Sardar, R. M. Yow, A. T. C. Tsin, R. Sardar, "Optical scattering, absorption, and polarization of healthy and neovascularized human retinal tissues," J. Biomed. Opt. 10, 051501 (2005).

    [35] D. K. Sardar, G.-Y. Swanland, R. M. Yow, R. J. Thomas, A. T. C. Tsin, "Optical properties of ocular tissues in the near infrared region," Lasers Med. Sci. 22, 46-52 (2007).

    [36] H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, Y. Jin, "Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques," World J. Gastroenterology 11, 2413-2419 (2005).

    [37] D. Zhu, W. Lu, S. Zeng, Q. Luo, "Effect of losses of sample between two integrating spheres on optical properties estimation," J. Biomed. Opt. 12, 064004 (2007).

    [38] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, E. E. Chikina, A. B. Knyazev, O. V. Mareev, "Optical properties of mucous membrane in the spectral range 350 2000 nm," Opt. Spectrosc. 97, 978-983 (2004).

    [39] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D: Appl. Phys. 38, 2543-2555 (2005).

    [40] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Optical properties of the subcutaneous adipose tissue in the spectral range 400 2500 nm," Opt. Spectrosc. 99, 836-842 (2005).

    [41] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Estimate of the melanin content in human hairs by the inverse Monte Carlo method using a system for digital image analysis," Quantum Electron. 36, 1111-1118 (2006).

    [42] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Optical properties of human cranial bone in the spectral range from 800 to 2000 nm," Proc. SPIE 6163, 616310 (2006).

    [43] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, "Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: Prognosis for gastroenterology," Med. Laser Appl. 22, 95-104 (2007).

    [44] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Optical properties of human sclera in spectral range 370 2500 nm," Opt. Spectrosc. 109, 197-204 (2010).

    [45] J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, "Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements," Appl. Opt. 39, 1202-1209 (2000).

    [46] R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, "Condensed Monte Carlo simulations for the description of light transport," Appl. Opt. 32, 426-434 (1993).

    [47] M. Hammer, A. Roggan, D. Schweitzer, G. Müller, "Optical properties of ocular fundus tissues — an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).

    [48] C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26(17), 1335-1337 (2001).

    [49] C. J. Hourdakis, A. Perris, "A Monte Carlo estimation of tissue optical properties for use in laser dosimetry," Phys. Med. Biol. 40, 351-364 (1995).

    [50] R. Marchesini, C. Clemente, E. Pignoli, M. Brambilla, "Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin," J. Photochem. Photobiol. B 16, 127-140 (1992).

    [51] G. M. Palmer, N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).

    [52] G. M. Palmer, N. Ramanujam, "Monte Carlobased inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis," Appl. Opt. 45, 1072-1078 (2006).

    [53] P. M. Ripley, J. G. Laufer, A. D. Gordon, R. J. Connell, S. G. Bown, "Near-infrared optical properties of ex vivo human uterus determined by the Monte Carlo inversion technique," Phys. Med. Biol. 44, 2451-2462 (1999).

    [54] A. Roggan, O. Minet, C. Schroder, G. Müller, "The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulations," Proc. SPIE 2100, 42-56 (1994).

    [55] A. Roggan, K. D€orschel, O. Minet et al., "The optical properties of biological tissue in the near infrared wavelength range — Review and measurements," in Laser-Induced Interstitial Thermotherapy, PM25, G. Müller, A. Roggan (eds.), pp. 10 44, SPIE Press, Bellingham, WA (1995).

    [56] A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 46 (1999).

    [57] E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and nearinfrared spectral range," J. Biomed. Opt. 11, 064026 (2006).

    [58] C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).

    [59] L. Wang, S. L. Jacques, L. Zheng,"MCML—Monte Carlo modeling of light transport in multi-layered tissues," Comp. Methods Progr. Biomed. 47, 131-146 (1995).

    [60] I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, "Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements," Appl. Opt. 35, 6797-6809 (1996).

    [61] A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H.-J. Schwarzmaier, "Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near-infrared spectral range," Phys. Med. Biol. 47, 2059-2073 (2002).

    [62] B. Nemati, H. G. Rylander III, A. J. Welch, "Optical properties of conjunctiva, sclera, and the ciliary body and their consequences for trans-scleral cyclophotocoagulation," Appl. Opt. 35, 3321-3327 (1996).

    [63] D. W. Ebert, C. Roberts, S. K. Farrar, W. M. Johnston, A. S. Litsky, A. L. Bertone, "Articular cartilage optical properties in the spectral range 300 850 nm," J. Biomed. Opt. 3, 326-333 (1998).

    [64] S. K. Farrar, C. Roberts, W. M. Johnston, P. A. Weber, "Optical properties of human trabecular meshwork in the visible and near-infrared region," Lasers Surg. Med. 25, 348-362 (1999).

    [65] A. Dimofte, J. C. Finlay, T. C. Zhu, "A method for determination of the absorption and scattering properties interstitially in turbid media," Phys. Med. Biol. 50, 2291-2311 (2005).

    [66] J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, "Changes in the optical properties (at 632.8 nm) of slowly heated myocardium," Appl. Opt. 32, 367-371 (1993).

    [67] M. Friebel, A. Roggan, G. Müller, M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocritdependent effective scattering phase functions," J. Biomed. Opt. 11, 034021 (2006).

    [68] M. Friebel, J. Helfmann, U. Netz, M. Meinke, "Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm," J. Biomed. Opt. 14, 034001 (2009).

    [69] M. Meinke, G. Müller, J. Helfmann, M. Friebel, "Empirical model functions to calculate hematocrit- dependent optical properties of human blood," Appl. Opt. 46, 1742-1753 (2007).

    [70] M. Meinke, G. Müller, J. Helfmann, M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near-infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).

    [71] P. van der Zee, M. Essenpreis, D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993).

    [72] A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, "The optical properties of blood in the near-infrared spectral range," Proc. SPIE 2678, 314-324 (1996).

    [73] D. Spitzer, J. J. Ten Bosch, "The absorption and scattering of light in bovine and human dental enamel," Calc. Tiss. Res. 17, 129-137 (1975).

    [74] A. N. Yaroslavsky, A. V. Priezzhev, J. Rodriguez, I. V. Yaroslavsky, H. Battarbee, "Optics of blood," Chap. 2 in Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin (ed.), pp. 169-216, SPIE Press, Bellingham, WA (2002).

    [75] A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, "Changes in optical properties of human whole blood in vitro due to slow heating," Photochem. Photobiol. 65, 366-373 (1997).

    [76] A. N. Yaroslavsky, A. Vervoorts, A. V. Priezzhev, I. V. Yaroslavsky, J. G. Moser, H.-J. Schwarzmaier, "Can tumor cell suspension serve as an optical model of tumor tissue in situff," Proc. SPIE 3565, 165-173 (1999).

    [77] T. L. Troy, S. N. Thennadil, "Optical properties of human skin in the near-infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).

    [78] S. A. Prahl, Light Transport in Tissue, Ph.D. Thesis, University of Texas, Austin (1988).

    [79] D. Zhu, J. Wang, Z. Zhi, X. Wen, Q. Luo, "Imaging dermal blood flow through the intact rat skin with an optical clearing method," J. Biomed. Opt. 15, 026008 (2010).

    [80] C. Liu, Z. Zhi, V. V. Tuchin, Q. Luo, D. Zhu, "Enhancement of skin optical clearing efficacy using photo-irradiation," Lasers Surg. Med. 42, 132-140 (2010).

    [81] X. Wen, Z. Mao, Z. Han, V. V. Tuchin, D. Zhu, "In vivo skin optical clearing by glycerol solutions: Mechanism," J. Biophotonics 3, 44-52 (2010).

    [82] X. Wen, V. V. Tuchin, Q. Luo, D. Zhu, "Controlling of scattering of intralipid by using optical clearing agents," Phys. Med. Biol. 54, 6917-6930 (2009).

    [83] Z. Zhi, Z. Han, Q. Luo, D. Zhu, "Improve optical clearing of skin in vitro with propylene glycol as a penetration enhancer," J. Innovative Opt. Health Sci. 2, 269 278 (2009).

    [84] A. N. Yaroslavsky, I. V. Yaroslavsky, H.-J. Schwarzmaier, "Small-angle approximation to determine radiance distribution of a finite beam propagating through turbid medium," Proc. SPIE 3195, 110-120 (1998).

    [85] P. Kubelka, F. Munk, "Ein beitrag zur optik der farbanstriche," Z. Tech. Phys. 12, 593-601 (1931).

    [86] M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).

    [87] R. R. Anderson, J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13-19 (1981).

    [88] P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, S. L. Jacques, "In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy," J. Biomed. Opt. 10, 034018 (2005).

    [89] C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, V. Venugopalan, "Use of the -P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl. Opt. 43, 4677 4688 (2004).

    [90] H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas and Applications, Academic Press (1980).

    [91] S. A. Prahl, Inverse adding-doubling for optical properties measurements, http://omlc.ogi.edu/ software/iad/index.html (2007).

    [92] D. K. Sardar, L. B. Levy, "Optical properties of whole blood," Lasers Med. Sci. 13, 106 111F(1998).

    [93] J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, "In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm," Phys. Med. Biol. 42, 2255-2261 (1997).

    [94] E. A. Genina, A. N. Bashkatov, V. I. Kochubey, V. V. Tuchin, "Optical clearing of human dura mater," Opt. Spectrosc. 98, 470-476 (2005).

    [95] J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, "Effect of temperature on the optical properties of ex vivo human dermis and subdermis," Phys. Med. Biol. 43, 2479-2489 (1998).

    [96] F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, "Determination of reduced scattering and absorption coefficients by a single chargecoupled- device array measurement. Part II: Measurements on biological tissues," Opt. Eng. 34, 2064-2069 (1995).

    [97] F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, "In vivo local determination of tissue optical properties: Applications to human brain," Appl. Opt. 38, 4939- 4950 (1999).

    [98] Y. Du, X. H. Hu, M. Cariveau, G. W. Kalmus, J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-181 (2001).

    [99] O. S. Khalil, S.-J. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, F. F. de Mul, "Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin," J. Biomed. Opt. 8, 191-205 (2003).

    [100] T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).

    [101] P. Thueler, I. Charvet, F. Bevilacqua, M. S. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties," J. Biomed. Opt. 8, 495-503 (2003).

    [102] M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503 510 (1993).

    [103] N. Ugryumova, S. L. Matcher, D. P. Attenburrow, "Measurement of bone mineral density via light scattering," Phys. Med. Biol. 49, 469-483 (2004).

    [104] G. Alexandrakis, D. R. Busch, G. W. Faris, M. S. Patterson, "Determination of the optical properties of two-layer turbid media by use of a frequencydomain hybrid Monte Carlo diffusion model," Appl. Opt. 40, 3810-3821 (2001).

    [105] A. Kienle, M. S. Patterson, "Determination of the optical properties of turbid media from a single Monte Carlo simulation," Phys. Med. Biol. 41, 2221-2227 (1996).

    [106] D. Kumar, R. Srinivasan, M. Singh, "Optical characterization of mammalian tissues by laser reflectometry and Monte Carlo simulation," Med. Eng. Phys. 26, 363-369 (2004).

    [107] I. Nishidate, Y. Aizu, H. Mishina, "Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to nearinfrared (VIS-NIR) reflectance spectra," Opt. Rev. 10, 427-435 (2003).

    [108] I. Nishidate, Y. Aizu, H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).

    [109] I. Seo, J. S. You, C. K. Hayakawa, V. Venugopalan, "Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model," J. Biomed. Opt. 12, 014030 (2007).

    [110] C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, N. Ramanujam, "Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis-based feature extraction technique," Lasers Surg. Med. 38, 714-724 (2006).

    [111] S. L. Jacques, L. Wang, "Monte Carlo modeling of light transport in tissue," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert (eds.), pp. 73-100, Plenum Press, New York (1995).

    [112] L. Wang, S. L. Jacques, Monte Carlo modeling of light transport in multi-layered tissues in Standard C, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, http://ece.ogi.edu/omlc (1992).

    [113] A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).

    [114] L. O. Reynolds, N. J. McCormick, "Approximate two-parameter phase function for light scattering," J. Opt. Soc. Am. 70, 1206-1212 (1980).

    [115] P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods, World Scientific, Singapore (1990).

    [116] C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York (1983).

    [117] T. J. Farrell, M. S. Patterson, B. C. Wilson, "A diffusion theory model of spatially resolved, steadystate diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).

    [118] I. V. Yaroslavsky, V. V. Tuchin, "Light propagation in multilayer scattering media. Modeling by the Monte Carlo method," Opt. Spectrosc. 72, 505-509 (1992).

    [119] M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, "Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams," Lasers Surg. Med. 9, 148-154 (1989).

    [120] W. H. Press, S. A. Tuekolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge (1992).

    [121] R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).

    [122] E. Salomatina, A. N. Yaroslavsky, "Evaluation of the in vivo and ex vivo optical properties in a mouse ear model," Phys. Med. Biol. 53, 2797-2807 (2008).

    [123] R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, "Reduced light-scattering properties for mixtures of spherical particles: A simple approximation derived from Mie calculations," Appl. Opt. 31, 1370-1376 (1992).

    [124] R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, "Optical properties of human dermis in vitro and in vivo," Appl. Opt. 32, 435-447 (1993).

    [125] T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rufenacht, D. T. Delpy, "The use of the Henyey Greenstein phase function in Monte Carlo simulations in biomedical optics," Phys. Med. Biol. 51, N313-N322 (2006).

    [126] J. E. Choukeife, J. P. L'Huillier, "Measurements of scattering effects within tissue-like media at two wavelengths of 632.8 nm and 680 nm," Lasers Med. Sci. 14, 286-296 (1999).

    [127] F. K. Forster, A. Kienle, R. Michels, R. Hibst, "Phase function measurements on nonspherical scatterers using a two-axis goniometer," J. Biomed. Opt. 11, 024018 (2006).

    [128] M. Hammer, A. N. Yaroslavsky, D. Schweitzer, "A scattering phase function for blood with physiological haematoctit," Phys. Med. Biol. 46, N65-N69 (2001).

    [129] R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, "Extinction and absorption coef- ficients and scattering phase functions of human tissues in vitro," Appl. Opt. 28, 2318-2324 (1989).

    [130] C. V. L. Pop, S. Neamtu, "Aggregation of red blood cells in suspension: Study by light-scattering technique at small angles," J. Biomed. Opt. 13, 041308 (2008).

    [131] I. Turcu, C. V. L. Pop, S. Neamtu, "High-resolution angle-resolved measurements of light scattered at small angles by red blood cells in suspension," Appl. Opt. 45, 1964-1971 (2006).

    [132] D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, "Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths," Appl. Opt. 34, 1278-1285 (1995).

    [133] C. L. Darling, G. D. Huynh, D. Fried, "Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm," J. Biomed. Opt. 11, 034023 (2006).

    [134] J. M. Steinke, A. P. Shepherd, "Comparison of Mie theory and the light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988).

    [135] S. P. Treweek, J. C. Barbenel, "Direct measurement of the optical properties of human breast skin,"Med. Biol. Eng. Comp. 34, 285-289 (1996).

    [136] A. N. Yaroslavskaya, S. R. Utz, S. N. Tatarintsev, V. V. Tuchin, "Angular scattering properties of human epidermal layers," Proc. SPIE 2100, 38-41 (1994).

    [137] J. R. Zijp, J. J. Ten Bosch, "Optical properties of bovine muscle tissue in vitro: A comparison of methods," Phys. Med. Biol. 43, 3065-3081 (1998).

    [138] R. Drezek, A. Dunn, R. Richards-Kortum, "Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999).

    [139] S. L. Jacques, C. A. Alter, S. A. Prahl, "Angular dependence of the He Ne laser light scattering by human dermis," Lasers Life Sci. 1, 309-333 (1987).

    [140] J. D. Hardy, H. T. Hammel, D. Murgatroyd, "Spectral transmittance and reflectance of excised human skin," J. Appl. Physiol. 9, 257-264 (1956).

    [141] W. A. G. Bruls, J. C. van der Leun, "Forward scattering properties of human epidermal layers," Photochem. Photobiol. 40, 231-242 (1984).

    [142] N. G. Khlebtsov, I. L. Maksimova, V. V. Tuchin, L. V. Wang, "Introduction to light scattering by biological objects," Chap. 1 in Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin (ed.), pp. 31-167, SPIE Press, Bellingham, WA (2002).

    [143] R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, B. Jung, L. O. Svaasand, G. Aguilar, J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).

    [144] V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank "Optical properties of normal and diseased human breast tissues in the visible and near-infrared," Phys. Med. Biol. 35, 1317-1334 (1990).

    [145] N. Ghosh, S. K. Mohanty, S. K. Majumder, P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).

    [146] J. M. Schmitt, G. Kumar, "Optical scattering properties of soft tissue: A discrete particle model," Appl. Opt. 37, 2788-2797 (1998).

    [147] R. K. Wang, "Modeling optical properties of soft tissue by fractal distribution of scatterers," J. Modern Opt. 47, 103-120 (2000).

    [148] W.-C. Lin, M. Motamedi, A. J. Welch, "Dynamics of tissue optics during laser heating of turbid media," Appl. Opt. 35, 3413-3420 (1996).

    [149] C.-T. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, H. J. Buhr, "Optical properties of native and coagulated human liver tissue and liver metastases in the near-infrared range," Lasers Surg. Med. 23, 194-203 (1998).

    [150] X. Ma, J. Q. Lu, H. Ding, X.-H. Hu, "Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm," Opt. Lett. 30, 412-414 (2005).

    [151] D. J. Maitland, J. T. Walsh Jr., J. B. Prystowsky, "Optical properties of human gall bladder tissue and bile," Appl. Opt. 32, 586-591 (1993).

    [152] A. M. K. Nilsson, R. Berg, S. Andersson-Engels, "Measurements of the optical properties of tissue in conjunction with photodynamic therapy," Appl. Opt. 34, 4609-4619 (1995).

    [153] P. Parsa, S. L. Jacques, N. S. Nishioka, "Optical properties of rat liver between 350 2200 nm," Appl. Opt. 28, 2325-2330 (1989).

    [154] S. V. Patwardhan, A. P. Dhawan, P. A. Relue, "Monte Carlo simulation of light-tissue interaction: three-dimensional simulation for trans-illumination- based imaging of skin lesions," IEEE Trans. Biomed. Eng. 52, 1227-1236 (2005).

    [155] J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. Buhr, C.-T. Germer, "Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm," Lasers Surg. Med. 29, 205-212 (2001).

    [156] H.-J. Schwarzmaier, A. N. Yaroslavsky, A. Terenji, S. Willmann, I. V. Yaroslavsky, T. Kahn, "Changes in the optical properties of laser coagulated and thermally coagulated bovine myocardium," Proc. SPIE 3254, 361-365 (1998).

    [157] J.-I. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, T. E. Milner, "Optical and thermal properties of nasal septal cartilage," Lasers Surg. Med. 27, 119-128 (2000).

    [158] S. L. Jacques, "The role of skin optics in diagnostic and therapeutic uses of lasers," in Lasers in Dermatology, R. Steiner (ed.), pp. 1-21, Springer- Verlag, Berlin (1991).

    [159] G. F. Odland, "Structure of the skin," in Physiology, Biochemistry, and Molecular Biology of the Skin, Vol. 1, L. A. Goldsmith (ed.), pp. 3 62, Oxford University Press, Oxford (1991).

    [160] T. J. Ryan, "Cutaneous circulation," in Physiology, Biochemestry, and Molecular Biology of the Skin, Vol. 2, L. A. Goldsmith (ed.), pp. 1019-1084, Oxford University Press, Oxford (1991).

    [161] K. S. Stenn, "The skin," in Cell and Tissue Biology, L. Weiss (ed.), pp. 541 572, Urban and Shwarzenberg, Baltimore (1988).

    [162] M. A. Farage, K. W. Miller, P. Elsner, H. I. Maibach, "Structural characteristics of the aging skin: A review," J. Toxicology (Cutaneous Ocul. Toxicol.) 26, 343-357 (2007).

    [163] M. R. Chedekel, "Photophysics and photochemistry of melanin," in Melanin: Its Role in Human Photoprotection, L. Zeise, M. R. Chedekel, T. B. Fitzpatrick (eds.), pp. 11-22, Overland Park, Valdenmar (1995).

    [164] D. Parsad, K. Wakamatsu, A. J. Kanwar, B. Kumar, S. Ito, "Eumelanin and phaeomelanin contents of depigmented and repigmented skin in vitiligo patients," Br. J. Dermatol. 149, 624-626 (2003).

    [165] M. E. Darvin, I. Gersonde, M. Meinke, W. Sterry, J. Lademann, "Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method," J. Phys. D: App

    ALEXEY N. BASHKATOV, ELINA A. GENINA, VALERY V. TUCHIN. OPTICAL PROPERTIES OF SKIN, SUBCUTANEOUS, AND MUSCLE TISSUES: A REVIEW[J]. Journal of Innovative Optical Health Sciences, 2011, 4(1): 9
    Download Citation