• Photonics Research
  • Vol. 10, Issue 11, 2575 (2022)
Wei Ke1, Yanmei Lin1, Mingbo He1, Mengyue Xu1, Jiaxiang Zhang2, Zhongjin Lin3、4、*, Siyuan Yu1, and Xinlun Cai1、5、*
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200092, China
  • 3Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
  • 4e-mail:
  • 5e-mail:
  • show less
    DOI: 10.1364/PRJ.471534 Cite this Article Set citation alerts
    Wei Ke, Yanmei Lin, Mingbo He, Mengyue Xu, Jiaxiang Zhang, Zhongjin Lin, Siyuan Yu, Xinlun Cai. Digitally tunable optical delay line based on thin-film lithium niobate featuring high switching speed and low optical loss[J]. Photonics Research, 2022, 10(11): 2575 Copy Citation Text show less
    References

    [1] D. Gauthier. Slow light brings faster communications. Phys. World, 18, 30-32(2005).

    [2] J. T. Mok, B. J. Eggleton. Photonics: expect more delays. Nature, 433, 811-812(2005).

    [3] L. Zhou, X. Wang, L. Lu, J. Chen. Integrated optical delay lines: a review and perspective [Invited]. Chin. Opt. Lett., 16, 101301(2018).

    [4] R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain. Slow-light optical buffers: capabilities and fundamental limitations. J. Lightwave Technol., 23, 4046-4066(2005).

    [5] Z. Wang, N. Chi, S. Yu. Time-slot interchange using an optical buffer with a large variable delay range based on an active-vertical-coupler crosspoint switch. Opt. Eng., 45, 105003(2006).

    [6] M. Moralis-Pegios, G. Mourgias-Alexandris, N. Terzenidis, M. Cherchi, M. Harjanne, T. Aalto, A. Miliou, N. Pleros, K. Vyrsokinos. On-chip SOI delay line bank for optical buffers and time slot interchangers. IEEE Photon. Technol. Lett., 30, 31-34(2018).

    [7] P. Zheng, C. Wang, X. Xu, J. Li, D. Lin, G. Hu, R. Zhang, B. Yun, Y. Cui. A seven bit silicon optical true time delay line for Ka-band phased array antenna. IEEE Photon. J., 11, 5501809(2019).

    [8] C. Zhu, L. Lu, W. Shan, W. Xu, G. Zhou, L. Zhou, J. Chen. Silicon integrated microwave photonic beamformer. Optica, 7, 1162-1170(2020).

    [9] P. Zheng, X. Xu, D. Lin, P. Liu, G. Hu, B. Yun, Y. Cui. A wideband 1 × 4 optical beam-forming chip based on switchable optical delay lines for Ka-band phased array. Opt. Commun., 488, 126842(2021).

    [10] S. Li, X. Li, W. Zou, J. Chen. Rangeability extension of fiber-optic low-coherence measurement based on cascaded multistage fiber delay line. Appl. Opt., 51, 771-775(2012).

    [11] S. Granieri, M. Jaeger, A. Siahmakoun. Multiple-beam fiber-optic beamformer with binary array of delay lines. J. Lightwave Technol., 21, 3262-3272(2003).

    [12] E. Choi, J. Na, S. Y. Ryu, G. Mudhana, B. H. Lee. All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line. Opt. Express, 13, 1334-1345(2005).

    [13] M. Yessenov, A. F. Abouraddy. Demonstration of a free-space optical delay line using space-time wave packets. Frontiers in Optics + Laser Science APS/DLS, FW1C.1(2019).

    [14] X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, K. Wu, J. Chen. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica, 4, 507-515(2017).

    [15] Y. Wang, H. Sun, M. Khalil, W. Dong, I. Gasulla, J. Capmany, L. R. Chen. On-chip optical true time delay lines based on subwavelength grating waveguides. Opt. Lett., 46, 1405-1408(2021).

    [16] J. Xie, L. Zhou, Z. Li, J. Wang, J. Chen. Seven-bit reconfigurable optical true time delay line based on silicon integration. Opt. Express, 22, 22707-22715(2014).

    [17] Z. Ke, R. Ge, X. Cai. Tunable optical true time delay line based on ring array. Asia Communications and Photonics Conference (ACP), S3F.4(2018).

    [18] R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, D. J. Blumenthal. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications. IEEE Photon. Technol. Lett., 25, 1165-1168(2013).

    [19] K. Horikawa, I. Ogawa, H. Ogawa, T. Kitoh. Photonic switched true time delay beam forming network integrated on silica waveguide circuits. Proceedings of 1995 IEEE MTT-S International Microwave Symposium, 61, 65-68(1995).

    [20] M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, S. S. Patel. Integrated scalable continuously tunable variable optical delay lines. IEEE LEOS Annual Meeting Conference Proceedings, 736-737(2005).

    [21] X. Wang, B. Howley, M. Y. Chen, R. T. Chen. Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array. Appl. Opt., 46, 379-383(2007).

    [22] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [23] M. Li, L. Wang, X. Li, X. Xiao, S. J. P. R. Yu. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications. Photon. Res., 6, 109-116(2018).

    [24] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. R. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, L. Marko. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon., 13, 242-352(2021).

    [25] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [26] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [27] B. Pan, H. Cao, Y. Huang, Z. Wang, K. Chen, H. Li, Z. Yu, D. Dai. Compact electro-optic modulator on lithium niobate. Photon. Res., 10, 697-702(2022).

    [28] Z. Lin, Y. Lin, H. Li, M. Xu, M. He, W. Ke, H. Tan, Y. Han, Z. Li, D. Wang, X. S. Yao, S. Fu, S. Yu, X. Cai. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl., 11, 93(2022).

    [29] J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, Y. Cheng. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [30] Y. Pan, M. He, M. Xu, Z. Lin, Y. Lin, W. Ke, J. Liu, Z. Lin, Y. Zhu, S. Gao, H. Li, X. Liu, C. Liu, S. Yu, X. Cai. Compact substrate-removed thin-film lithium niobate electro-optic modulator featuring polarization-insensitive operation. Opt. Lett., 47, 1818-1821(2022).

    [31] M. Bahadori, M. Nikdast, Q. Cheng, K. Bergman. Universal design of waveguide bends in silicon-on-insulator photonics platform. J. Lightwave Technol., 37, 3044-3054(2019).

    [32] X. Jiang, H. Wu, D. Dai. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt. Express, 26, 17680-17689(2018).

    [33] L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson. On-chip transformation optics for multimode waveguide bends. Nat. Commun., 3, 1217(2012).

    [34] D. Dai. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt. Express, 22, 27524-27534(2014).

    [35] Q. Song, Z. Hu, K. Chen. Scalable and reconfigurable true time delay line based on an ultra-low-loss silica waveguide. Appl. Opt., 57, 4434-4439(2018).

    Wei Ke, Yanmei Lin, Mingbo He, Mengyue Xu, Jiaxiang Zhang, Zhongjin Lin, Siyuan Yu, Xinlun Cai. Digitally tunable optical delay line based on thin-film lithium niobate featuring high switching speed and low optical loss[J]. Photonics Research, 2022, 10(11): 2575
    Download Citation