• Laser & Optoelectronics Progress
  • Vol. 57, Issue 12, 120002 (2020)
Tangwei Li1、2, Guanjun Tong1、*, Baoqing Li1, and Xiaoyang Lu1
Author Affiliations
  • 1Key Laboratory of Science and Technology on Micro-System, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.120002 Cite this Article Set citation alerts
    Tangwei Li, Guanjun Tong, Baoqing Li, Xiaoyang Lu. Review on Object Detection and Recognition in Large Field of View[J]. Laser & Optoelectronics Progress, 2020, 57(12): 120002 Copy Citation Text show less
    References

    [1] Everingham M, van Gool L, Williams C K I et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 88, 303-338(2010).

    [2] Russakovsky O, Deng J, Su H et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 115, 211-252(2015).

    [3] Saez A, Bergasa L M, Romeral E et al. CNN-based fisheye image real-time semantic segmentation. [C]∥2018 IEEE Intelligent Vehicles Symposium (IV), June 26-30, 2018. Changshu. IEEE, 1039-1044(2018).

    [4] Zhang M, Yao J, Xia M H et al. Line-based multi-label energy optimization for fisheye image rectification and calibration. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015. Boston, MA, USA. IEEE, 4137-4145(2015).

    [5] Yin X Q, Wang X C, Yu J et al[M]. FishEyeRecNet: A multi-context collaborative deep network for fisheye image rectification, 475-490(2018).

    [6] Ju M R, Luo H B, Wang Z B et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 39, 0715004(2019).

    [7] Wang J Q, Chen K, Yang S et al. Region proposal by guided anchoring. [C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019. Long Beach, CA, USA. IEEE, 2965-2974(2019).

    [8] Cai Z W, Vasconcelos N. Cascade R-CNN: delving into high quality object detection. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018. Salt Lake City, UT. IEEE, 6154-6162(2018).

    [9] Liu L, Ouyang W L, Wang X G et al. -08-22)[2019-10-10]. https: ∥arxiv. org/abs/1809. 02165[LinkOut](2019).

    [10] Li X J, Feng D W, Xiang Y. Refractive-diffractive hybrid panoramic annular optical system design[J]. Laser & Optoelectronics Progress, 56, 182201(2019).

    [11] Zhang W, Cong M Y, Wang L P. Algorithms for optical weak small targets detection and tracking: review. [C]∥International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003, December 14-17, 2003. Nanjing. IEEE, 643-647(2003).

    [13] Boult T, Micheals R, Erkan A et al. Frame-rate multi-body tracking for surveillance. [C]∥Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1106-1112(1999).

    [14] Rybski P E, de la Torre F, Patil R et al. CAMEO: camera assisted meeting event observer. [C]∥IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, April 26-May 1, 2004. New Orleans, LA, USA. IEEE(2004).

    [15] Zeng J Y, Su X Y. Catadioptric omnidirectional system with undistorted imaging for horizontal scene[J]. Acta Optica Sinica, 23, 636-640(2003).

    [16] Chen L D, Wang W, Zhang M J et al. Design analysis of a complementary double-mirror catadioptric omnidirectional imaging system[J]. Acta Optica Sinica, 30, 3487-3494(2010).

    [17] Zhao Q, Shi X, Gong W et al. Large field-of-view and deep tissue optical micro-imaging based on parallel wavefront correction algorithm[J]. Chinese Journal of Lasers, 45, 1207001(2018).

    [18] Li L H, Shi P F, Zhao Q F. A multi-resolution based image registration method for panorama[J]. Journal of Image and Graphics, 11, 1271-1275(2006).

    [19] Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations. [C]∥Proceedings of the Seventh IEEE International Conference on Computer Vision, September 20-27, New York: IEEE, 666-673(1999).

    [20] Wu J, Wang L R, Huang M Y et al. High precision calibration of fisheye camera with single image under multiple geometric constraints[J]. Acta Optica Sinica, 38, 1115001(2018).

    [21] He Y, Wang L X, Cai Y et al. Research progress and prospect of catadioptric panoramic system[J]. Chinese Optics, 10, 681-698(2017).

    [22] Jeong J S, Kim H T, Kim B et al. Wide rear vehicle recognition using a fisheye lens camera image. [C]∥2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), October 25-28, 2016. Jeju, South Korea. IEEE, 691-693(2016).

    [23] Dalal N, Triggs B. Histograms of oriented gradients for human detection. [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA. IEEE, 886-893(2005).

    [24] Silberstein S, Levi D, Kogan V et al. Vision-based pedestrian detection for rear-view cameras. [C]∥2014 IEEE Intelligent Vehicles Symposium Proceedings, June 8-11, 2014. MI, USA. IEEE, 853-860(2014).

    [25] Levi D, Silberstein S. Tracking and motion cues for rear-view pedestrian detection. [C]∥2015 IEEE 18th International Conference on Intelligent Transportation Systems, September 15-18, 2015. Gran Canaria, Spain. IEEE, 664-671(2015).

    [26] Bertozzi M, Castangia L, Cattani S et al. 360° detection and tracking algorithm of both pedestrian and vehicle using fisheye images. [C]∥2015 IEEE Intelligent Vehicles Symposium (IV), June 28-July 1, 2015. Seoul, South Korea. IEEE, 132-137(2015).

    [27] Yang B, Yan J J, Lei Z et al. Aggregate channel features for multi-view face detection. [C]∥IEEE International Joint Conference on Biometrics, September 29-October 2, 2014. Clearwater, FL, USA. IEEE, 1-8(2014).

    [28] Suhr J K, Jung H G. Rearview camera-based backover warning system exploiting a combination of pose-specific pedestrian recognitions[J]. IEEE Transactions on Intelligent Transportation Systems, 19, 1122-1129(2018).

    [29] Felzenszwalb P. McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. [C]∥2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008. Anchorage, AK, USA. IEEE, 1-8(2008).

    [30] Yu H F, Liu W, Yuan H et al. Moving object detection based on sub-block motion compensation[J]. Acta Electronica Sinica, 45, 173-180(2017).

    [31] Martinez E, del Pobil A P. A panoramic vision system for human-robot interaction. [C]∥2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), March 2-5, 2010. Osaka. IEEE, 171-172(2010).

    [32] Ding Y, Quan W, Han C. A motion detection accelerated algorithm based on distortion correcting of local field angle[J]. Science Technology and Engineering, 16, 70-75(2016).

    [33] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. [C]∥Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, December 8-14, San Diego, CA, USA, 511-518(2001).

    [34] Zhang B F, Ma Z J, Zhu J C et al. Implementation of fisheye image real-time correction based on DSP[J]. Laser & Infrared, 45, 181-184(2015).

    [35] Wu Z J, Wu Q Y, Zhang B C. A new calibration method for fisheye lens based on spherical model[J]. Chinese Journal of Lasers, 42, 0508006(2015).

    [36] Yoshimi K, Takahashi K. Warping approach for rearview pedestrian detection with fish eye cameras. [C]∥2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), June 27-28, 2017. Vienna, Austria. IEEE, 121-126(2017).

    [37] Cai C T, Wu K J, Liu Q F et al. Panoramic multi-object real-time detection based on improved YOLO algorithm[J]. Computer Engineering and Design, 39, 3259-3264, 3271(2018).

    [38] Xu J, Yang H B, Song Y et al. A face recognition technology based on fisheye camera[J]. Information & Communications, 31, 131-132(2018).

    [39] Bagherinezhad H, Rastegari M, Farhadi A. LCNN: lookup-based convolutional neural network. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017. Honolulu, HI. IEEE, 7120-7129(2017).

    [40] Deng J, Qin X B. -06-13[P]. Wang W F. A method of flame recognition based on deep learning: CN106845410A.(2017).

    [41] Yang W Y, Qian Y L, Kamarainen J K et al. Object detection in equirectangular panorama. [C]∥2018 24th International Conference on Pattern Recognition (ICPR), August 20-24, 2018. Beijing. IEEE, 2190-2195(2018).

    [42] Deng F C, Zhu X R, Ren J M. Object detection on panoramic images based on deep learning. [C]∥2017 3rd International Conference on Control, Automation and Robotics (ICCAR), April 24-26, 2017. Nagoya, Japan. IEEE, 375-380(2017).

    [43] Wang Z X, Zhong R F, Xie D H. Automatically measuring the coordinates of streetlights in vehicle-borne spherical images[J]. Journal of Image and Graphics, 23, 1371-1381(2018).

    [44] Fu J L, Alvar S R, Bajic I V et al. -02-07)[2019-07-19]. https: ∥arxiv. org/abs/1902. 02777v1.(2019).

    [45] Cohen T, Welling M. Group equivariant convolutional networks. [C]∥International Conference on Machine Learning, June 19-24, 2016. New York,IEEE, 2990-2999(2016).

    [46] Worrall D E, Garbin S J, Turmukhambetov D et al. Harmonic networks: deep translation and rotation equivariance. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017. Honolulu, HI. IEEE, 5028-5037(2017).

    [47] Su Y C. -11-07)[2019-07-19]. https: ∥arxiv., org/abs/1708, 00919(2018).

    [48] Tateno K, Navab N, Tombari F[M]. Distortion-aware convolutional filters for dense prediction in panoramic images, 732-750(2018).

    [49] Coors B, Condurache A P, Geiger A[M]. SphereNet: learning spherical representations for detection and classification in omnidirectional images, 525-541(2018).

    [50] Lee Y, Jeong J, Yun J et al. SpherePHD: applying CNNs on a spherical PolyHeDron representation of 360° images. [C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019. Long Beach, CA, USA. IEEE, 9173-9181(2019).

    [51] Horn B K P, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 17, 185-203(1981).

    [52] Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 12, 43-77(1994).

    [53] Haritaoglu I, Harwood D, Davis L S. W 4: real-time surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 809-830(2000).

    [54] McKenna S J, Jabri S, Duric Z et al. Tracking groups of people[J]. Computer Vision and Image Understanding, 80, 42-56(2000).

    [55] Collins R T, Lipton A J, Kanade T et al. A system for video surveillance and monitoring[R]. Carnegie Mellon University, 1-68(2000).

    [56] Stratmann I. Omnidirectional imaging and optical flow. [C]∥Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV'02, June 2,2002, Copenhagen, Denmark. IEEE Comput. Soc, 104-111(2002).

    [57] Anandan P. A computational framework and an algorithm for the measurement of visual motion[J]. International Journal of Computer Vision, 2, 283-310(1989).

    [58] Horn B K P, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 17, 185-203(1981).

    [59] Lucas B, its application to stereo[EB/OL]. -01-01)[2019-07-19] https: ∥www. researchgate. net/publication/239061443_An_iterative_technique_of_image_registration_and_its_application_to_stereo.(1981).

    [60] Fleet D J, Jepson A D. Computation of component image velocity from local phase information[J]. International Journal of Computer Vision, 5, 77-104(1990).

    [61] Šamija H. Markovi I, Petrovi I. Optical flow field segmentation in an omnidirectional camera image based on known camera motion. [C]∥Proceedings of the 34th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2011), May 23-27, 2011, Opatija, Hrvatska, 165-169(2011).

    [62] Herceg D. Markovi I, Petrovi I. Real-time detection of moving objects by a mobile robot with an omnidirectional camera. [C]∥2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA), September 4-6, 2011, Dubrovnik, Croatia, IEEE, 289-294(2011).

    [63] Jin G F. Pedestrian detection and tracking of fisheye images based on multi-feature fusion Xi'an:[D]. Xidian University, 23-28(2017).

    [64] Wu J H, Shang C, Zhang G Y et al. Study of moving objects detection in fisheye image based on moving blob method[J]. Computer Engineering and Applications, 52, 158-161, 177(2016).

    [65] Wu J H, Shang C, Zhang G Y et al. A master-slave object surveillance system based on fisheye camera and PTZ camera[J]. Computer Engineering and Science, 39, 540-546(2017).

    [66] Baris I, Bastanlar Y. Classification and tracking of traffic scene objects with hybrid camera systems. [C]∥2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), October 16-19, 2017. Yokohama. IEEE, 1-6(2017).

    [67] Zhang L D, Zhu J C, Feng W J. Fish-eye lens image co-saliency detection algorithm[J]. Journal of Tianjin University of Technology, 33, 41-45(2017).

    [68] Saito M, Kitaguchi K, Kimura G et al. People detection and tracking from fish-eye image based on probabilistic appearance model. [C]∥SICE Annual Conference 2011, September 13-18, 2011, Tokyo, Japan, IEEE, 435-440(2011).

    [69] Cinaroglu I, Bastanlar Y. A direct approach for object detection with catadioptric omnidirectional cameras[J]. Signal, Image and Video Processing, 10, 413-420(2016).

    [70] Wang T, Chang C W, Wu Y S. Template-based people detection using a single downward-viewing fisheye camera. [C]∥2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), November 6-9, 2017. Xiamen, China. IEEE, 719-723(2017).

    [71] Zeng Y, Zhuge Y Z, Lu H C et al. Multi-source weak supervision for saliency detection. [C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019. Long Beach, CA, USA. IEEE, 6074-6083(2019).

    [72] Vardazaryan A, Mutter D, Marescaux J et al[M]. Weakly-supervised learning for tool localization in laparoscopic videos, 169-179(2018).

    [73] Zhuang Z, Zhang G H, Dong W et al[M]. Intelligent fault detection of high-speed railway turnout based on hybrid deep learning, 98-103(2018).

    [74] Li Y, Fu K, Sun H et al. An aircraft detection framework based on reinforcement learning and convolutional neural networks in remote sensing images[J]. Remote Sensing, 10, 243(2018).

    Tangwei Li, Guanjun Tong, Baoqing Li, Xiaoyang Lu. Review on Object Detection and Recognition in Large Field of View[J]. Laser & Optoelectronics Progress, 2020, 57(12): 120002
    Download Citation