• Photonics Research
  • Vol. 10, Issue 10, 2349 (2022)
Daniele Ancora1、*, Lorenzo Dominici2, Antonio Gianfrate2, Paolo Cazzato2, Milena De Giorgi2, Dario Ballarini2, Daniele Sanvitto2, and Luca Leuzzi1、3
Author Affiliations
  • 1Department of Physics, Università di Roma la Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy
  • 2Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR-NANOTEC), Via Monteroni, I-73100 Lecce, Italy
  • 3Institute of Nanotechnology, Soft and Living Matter Laboratory, Consiglio Nazionale delle Ricerche (CNR-NANOTEC), Piazzale Aldo Moro 5, I-00185 Rome, Italy
  • show less
    DOI: 10.1364/PRJ.462578 Cite this Article Set citation alerts
    Daniele Ancora, Lorenzo Dominici, Antonio Gianfrate, Paolo Cazzato, Milena De Giorgi, Dario Ballarini, Daniele Sanvitto, Luca Leuzzi. Speckle spatial correlations aiding optical transmission matrix retrieval: the smoothed Gerchberg–Saxton single-iteration algorithm[J]. Photonics Research, 2022, 10(10): 2349 Copy Citation Text show less
    References

    [1] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [2] J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [3] I. M. Vellekoop, A. Lagendijk, A. Mosk. Exploiting disorder for perfect focusing. Nat. Photonics, 4, 320-322(2010).

    [4] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, R. Piestun. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express, 20, 4840-4849(2012).

    [5] E. G. van Putten, A. P. Mosk. The information age in optics: measuring the transmission matrix. Physics, 3, 22(2010).

    [6] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [7] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [8] D. Ancora, L. Leuzzi. Transmission matrix inference via pseudo-likelihood decimation. J. Phys. A Math. Theor., 55, 395002(2022).

    [9] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 9, 529-535(2015).

    [10] S. A. Goorden, J. Bertolotti, A. P. Mosk. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express, 22, 17999-18009(2014).

    [11] S. Li, C. Saunders, D. J. Lum, J. Murray-Bruce, V. K. Goyal, T. Čižmár, D. B. Phillips. Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci. Appl., 10, 88(2021).

    [12] S. Li, S. A. Horsley, T. Tyc, T. Čižmár, D. B. Phillips. Memory effect assisted imaging through multimode optical fibres. Nat. Commun., 12, 3751(2021).

    [13] P. Del Hougne, B. Rajaei, L. Daudet, G. Lerosey. Intensity-only measurement of partially uncontrollable transmission matrix: demonstration with wave-field shaping in a microwave cavity. Opt. Express, 24, 18631-18641(2016).

    [14] A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, L. Daudet. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express, 23, 11898-11911(2015).

    [15] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [16] G. Huang, D. Wu, J. Luo, L. Lu, F. Li, Y. Shen, Z. Li. Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices. Photon. Res., 9, 34-42(2021).

    [17] T. Zhao, S. Ourselin, T. Vercauteren, W. Xia. Seeing through multimode fibers with real-valued intensity transmission matrices. Opt. Express, 28, 20978-20991(2020).

    [18] L. Devaud, B. Rauer, J. Melchard, M. Kühmayer, S. Rotter, S. Gigan. Speckle engineering through singular value decomposition of the transmission matrix(2020).

    [19] D. Di Battista, D. Ancora, H. Zhang, K. Lemonaki, E. Marakis, E. Liapis, S. Tzortzakis, G. Zacharakis. Tailored light sheets through opaque cylindrical lenses. Optica, 3, 1237-1240(2016).

    [20] D. Di Battista, D. Ancora, M. Leonetti, G. Zacharakis. Tailoring non-diffractive beams from amorphous light speckles. Appl. Phys. Lett., 109, 121110(2016).

    [21] A. Boniface, J. Dong, S. Gigan. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun., 11, 6154(2020).

    [22] J. A. Rodriguez, R. Xu, C.-C. Chen, Y. Zou, J. Miao. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J. Appl. Crystallogr., 46, 312-318(2013).

    [23] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [24] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [25] G. Huang, D. Wu, J. Luo, Y. Huang, Y. Shen. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt. Express, 28, 9487-9500(2020).

    [26] M. N’Gom, M.-B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, R. R. Nadakuditi. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method. Sci. Rep., 7, 2518(2017).

    [27] M. N’Gom, T. B. Norris, E. Michielssen, R. R. Nadakuditi. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Opt. Lett., 43, 419-422(2018).

    [28] T. Zhao, L. Deng, W. Wang, D. S. Elson, L. Su. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber. Opt. Express, 26, 20368-20378(2018).

    [29] L. Deng, J. D. Yan, D. S. Elson, L. Su. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system. Opt. Express, 26, 18436-18447(2018).

    [30] P. Schniter, S. Rangan. Compressive phase retrieval via generalized approximate message passing. IEEE Trans. Signal Process., 63, 1043-1055(2014).

    [31] M. K. Sharma, C. A. Metzler, S. Nagesh, R. G. Baraniuk, O. Cossairt, A. Veeraraghavan. Inverse scattering via transmission matrices: broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comput. Imaging, 6, 95-108(2019).

    [32] A. Ben-Israel, T. N. Greville. Generalized Inverses: Theory and Applications(2003).

    [33] B. Rajaei, E. W. Tramel, S. Gigan, F. Krzakala, L. Daudet. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4054-4058(2016).

    [34] K. Moreland. Diverging color maps for scientific visualization. Proceedings of the 5th International Symposium on Visual Computing Advances in Visual Computing (ISVC), 5876, 92-103(2009).

    [35] A. Dubois, L. Vabre, A.-C. Boccara, E. Beaurepaire. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt., 41, 805-812(2002).

    [36] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express, 20, 1733-1740(2012).

    [37] D. Ancora, T. Furieri, S. Bonora, A. Bassi. Spinning pupil aberration measurement for anisoplanatic deconvolution. Opt. Lett., 46, 2884-2887(2021).

    [38] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer. Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems, 1-4(2017).

    [39] A. Boniface, M. Mounaix, B. Blochet, R. Piestun, S. Gigan. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica, 4, 54-59(2017).

    [40] D. Di Battista, D. Ancora, M. Leonetti, G. Zacharakis. From amorphous speckle pattern to reconfigurable Bessel beam via wavefront shaping(2015).

    [41] W. Fan, Z. Chen, V. V. Yakovlev, J. Pu. High-fidelity image reconstruction through multimode fiber via polarization-enhanced parametric speckle imaging. Laser Photon. Rev., 15, 2000376(2021).

    [42] D. E. B. Flaes, J. Stopka, S. Turtaev, J. F. De Boer, T. Tyc, T. Čižmár. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys. Rev. Lett., 120, 233901(2018).

    [43] F. Mignacco, P. Urbani, L. Zdeborová. Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem. Mach. Learn. Sci. Technol., 2, 035029(2021).

    [44] Y. Geng, H. Chen, Z. Zhang, B. Zhuang, H. Guo, Z. He, D. Kong. High-speed focusing and scanning light through a multimode fiber based on binary phase-only spatial light modulation. Appl. Phys. B, 127, 25(2021).

    [45] J. Dong, F. Krzakala, S. Gigan. Spectral method for multiplexed phase retrieval and application in optical imaging in complex media. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4963-4967(2019).

    Daniele Ancora, Lorenzo Dominici, Antonio Gianfrate, Paolo Cazzato, Milena De Giorgi, Dario Ballarini, Daniele Sanvitto, Luca Leuzzi. Speckle spatial correlations aiding optical transmission matrix retrieval: the smoothed Gerchberg–Saxton single-iteration algorithm[J]. Photonics Research, 2022, 10(10): 2349
    Download Citation