• Infrared and Laser Engineering
  • Vol. 50, Issue 8, 20210346 (2021)
Weijun Ling and Wenting Wang
Author Affiliations
  • Institute of Laser Technology, Tianshui Normal University, Tianshui 741001, China
  • show less
    DOI: 10.3788/IRLA20210346 Cite this Article
    Weijun Ling, Wenting Wang. Research progress of 2 μm ultrashort pulse all solid state thulium doped oscillator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210346 Copy Citation Text show less
    References

    [1] F L Johnson. Optical maser characteristics of rare-earth ions in crystals. Journal of Applied Physics, 34, 897-909(1963).

    [2] E Sorokin, I T Sorokina, J Mandon, et al. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+: ZnSe femtosecond laser. Optics Express, 15, 16540-16545(2007).

    [3] Y Mairesse, Bohan A de, L J Frasinski, et al. Optimization of attosecond pulse generation. Physical Review Letters, 93, 163901(2004).

    [4] J Zhang, K F Mak, O Pronin. Kerr-lens mode-locked 2 μm thin-disk lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-11(2018).

    [5] J F Pinto, L Esterowitz, G H Rosenblatt. Continuous wave mod-elocked 2 μm Tm: YAG laser. Optics Letters, 17, 731-732(1992).

    [6] U Keller, D A B Miller, G D Boyd, et al. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semi- conductor Fabry-Perot saturable absorber. Optics Letter, 17, 505-507(1992).

    [7] A A Lagatsky, X Han, M D Serrano, et al. Femtosecond (191 fs) NaY(WO4)2 Tm, Ho- codoped laser at 2060 nm. Optics Letters, 35, 3027-3029(2010).

    [8] J Ma, G Q Xie, W L Gao, et al. Diode pumped mode-locked femtosecond Tm: CLNGG disordered crystal laser. Optics Letters, 37, 1376-1378(2012).

    [9] W Zhou, X Xu, R Xu, et al. Watt-level broadly wavelength tunable mode locked solid-state laser in the 2 μm water absorption region. Photonics Research, 5, 583-587(2017).

    [10] L Wang, W Chen, Y Zhao, et al. Sub-50 fs pulse generation from a SESAM mode-locked Tm, Ho-codoped calcium aluminate laser. Optics Letters, 46, 2642(2021).

    [11] C Luan, K Yang, J Zhao, et al. Diode-pumped mode locked Tm: LuAG laser at 2 μm based on GaSb SESAM. Optics Letters, 42, 839-842(2017).

    [12] H L Zhang, J Y Huang, C Zhou, et al. 2 μm-band Tm: YAP Crystal semiconductor saturable absorption mirror CW mode-locked laser. Infrared and Laser Engineering, 47, 0505003(2018).

    [13] Y Zhao, Y Wang, X Zhang, et al. 87 fs mode locked Tm, Ho: CaYAIO4 laser at 2043 nm. Optics Letters, 43, 915-918(2018).

    [14] Wang Y, Zhao Y, Loiko P, et al. 52 fs SESAM mode hocked Tm, Ho: CALGO laser[C]Advanced Solid State Lasers, 2019.

    [15] Wang Y C, Zhao Y G, Pan Z B, et al. 73 fs SESAM modelocked Tm, Ho: CNGG laser at 2061 nm[C]Solid State Lasers Technology Devices, 2020.

    [16] W Chen, M Mero, Y Wang, et al. SESAM mode-locked Tm: LuYO3 ceramic laser generating 54-fs pulses at 2048 nm. Applied Optics, 59, 10493(2020).

    [17] T Feng, K Yang, J Zhao, et al. 1.21 W passively mode-locked Tm: LuAG laser. Optics Express, 23, 11819-11824(2015).

    [18] A Tyazhev, R Soulard, T Godin, et al. Passively mode locked diode pumped Tm3+: YLF laser emitting at 1.91 µm using a GaAs-based SESAM. Laser Physics Letters, 15, 045807(2018).

    [19] A Gluth, Y Wang, V Petrov, et al. GaSb based SESAM mode-locked Tm: YAG ceramic laser at 2 µm. Optics Express, 23, 1361-1369(2015).

    [20] Y Wang, R Lan, X Mateos, et al. Thulium doped LuAG ceramics for passively mode locked lasers. Optics Express, 25, 7084-7091(2017).

    [21] R Soulard, A Tyazhev, J Doualan, et al. 2.3 µm Tm3+: YLF mode locked laser. Optics Letters, 42, 3534-3536(2017).

    [22] Y Wang, G Xie, X Xu, et al. SESAM mode locked Tm: CALGO laser at 2 µm. Optieal Materials Express, 6, 131-136(2016).

    [23] Y Wang, J Wei, P Loiko, et al. Sub-10 optical-cycle passively mode-locked Tm: (Lu2/3Sc1/3)2O3 ceramic laser at 2 µm. Optics Express, 26, 10299(2018).

    [24] W B Cho, A Schmidt, J H Yim, et al. Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber. Optics Letters, 17, 11007-11012(2009).

    [25] Z Qu, Y Wang, J Liu, et al. Passively mode locked 2-μm Tm: YAP laser with a double-wall carbon nanotube absorber. Chinese Physics B, 21, 064211(2012).

    [26] Y G Zhao, W Li, Y C Wang, et al. SWCNT-SA mode-locked Tm: LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2 µm. Optics Letters, 45, 459(2020).

    [27] A Schmidt, S Rivier, G Steinmeyer, et al. Passive mode locking of Yb: KLuW using a single walled carbon nanotube saturable absorber. Optics Letters, 33, 729-731(2008).

    [28] Y G Zhao, Y C Wang, W D Chen, et al. 67 fs pulse generate-on from a mode-locked Tm, Ho: CLNGG laser at 2083 nm. Optics Express, 27, 1922(2019).

    [29] Z Pan, Y Wang, Y Zhao, et al. Generation of 84-fs pulses from a mode-locked Tm: CNNGG disordered garnet crystal laser. Photonics Research, 6, 800-804(2018).

    [30] Z Pan, Y Wang, Y Zhao, et al. Sub-80 fs mode locked Tm, Ho codoped disordered garnet crystal oscillator operating at 2081 nm. Optics Letters, 43, 5154-5157(2018).

    [31] Y Wang, Y Zhao, Z Pan, et al. 78 fs SWCNT SA mode- locked Tm: CLNGG disordered garnet erystal laser at 2017 nm. Optics Letters, 43, 4268-4271(2018).

    [32] M Breusing, C Ropers, T Elsaesser, et al. Ultrafast carrier dynamics in graphite. Physical Review Letters, 102, 086809(2009).

    [33] J Liu, Y G Wang, Z S Qu, et al. Graphene oxide absorber for 2 μm passive mode‐locking Tm: YAlO3 laser. Laser Physics Letters, 9, 15-19(2011).

    [34] R Sun, C Chen, W Ling, et al. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 68, 104207(2019).

    [35] Y Wang, W Chen, M Mero, et al. Sub-100 fs Tm: MgWO4, laser at 2017 nm mode locked by a graphene saturable absorber. Optics Letters, 16, 3076-3079(2017).

    [36] H Wan, W Cai, F. Wang et al. et al. High-quality monolayer graphene for bulk laser mode-locking near 2 µm. Optical and Quantum Electronics, 48, 1-8(2016).

    [37] J Ma, G Q Xie, J Zhang, et al. Passively mode-locked Tm: YAG ceramic laser based on graphene. IEEE Journal of Selected Topics in Quantum Electronics, 21, 160-165(2015).

    [38] K P Wang, J Wang, J T Fan, et al. Ultrafast saturable absorption of two dimensional MoS2, nanosheets. ACS Nano, 7, 9260-9267(2013).

    [39] B Xu, Y J Cheng, Y Wang, et al. Passively Q-switched Nd: YAlO, nanosecond laser using MoS2 as saturable absorber. Optics Express, 22, 28934-28940(2014).

    [40] L J Li, L Zhou, T X Li, et al. Passive mode- locking operation of a diode pumped Tm: YAG laser with a MoS2 saturable absorber. Optics and Laser Technology, 124, 105986(2020).

    [41] B Zhang, F Lou, R Zhao, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser. Optics Letters, 40, 3691-3694(2015).

    [42] X Su, Y Wang, B Zhang, et al. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber. Optics Letters, 41, 1945-1948(2016).

    [43] F Predan, J Ohlmann, S Mrabet, et al. Hall characterization of epitaxial GaSb and AlGaAsSb layers using p-n junctions on GaSb substrates. Journal of Crystal Growth, 36-42(20184968).

    [44] R Kumar, S Sahoo, E Joanni, et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Research, 12, 2655-2694(2019).

    [45] C Kränkel, E Fujita, M Tokurakawa. Kerr-lens mode-locked Tm3+: Sc2O3 single-crystal laser in-band pumped by an Er: Yb fiber mopa at 1611 nm. Optics Letters, 42, 3185(2017).

    [46] H A Haus, J G Fujimoto, E P Ippen. Analytic theory of additive pulse and Kerr lens mode locking. IEEE Journal of Quantum Electronics, 28, 2086-2096(1992).

    [47] D Huang, M Ulman, L H Acioli, et al. Self-focusing-induced saturable loss for laser mode locking. Optics Letters, 17, 511(1992).

    [48] Y Senatsky, A Shirakawa, Y Sato, et al. Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high‐power laser‐driver. Laser Physics Letters, 1, 500-506(2004).

    [49] F Canbaz, I Yorulmaz, A Sennaroglu. Kerr-lens mode-locked 2.3-μm Tm3+: YLF laser as a source of femtosecond pulses in the mid-infrared. Optics Letters, 42, 3964(2017).

    [50] L Wang, W D Chen, Y G Zhao, et al. Single-walled carbon-nanotube saturable absorber assisted Kerr-lens mode-locked Tm: MgWO4 laser. Optics Letters, 45, 6142-6145(2020).

    [51] A Suzuki, C Kränkel, M Tokurakwa. Sub-6 optical-cycle Kerr-lens mode-locked Tm: Lu2O3 and Tm: Sc2O3 combined gain media laser at 2.1 µm. Optics Express, 29, 19465-19471(2021).

    [52] Y Zhao, L Wang, W Chen, et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser. Optics Letters, 46, 3428-3431(2021).

    [53] K Yang, D Heinecke, J Paajaste, et al. Mode-locking of 2 μm Tm, Ho: YAG laser with GalnAs and GaSb-based SESAMs. Optics Express, 21, 4311-4318(2013).

    [54] K J Yang, D C Heinecke, C Kolbl, et al. Mode locked Tm, Ho: YAP laser around 2.1 μm. Optics Express, 21, 1574-1580(2013).

    [55] K J Yang, H Bromberger, D Heinecke, et al. Efficient continuous wave and passively mode-locked Tm-doped crystalline silicate laser. Optics Express, 20, 18630-18635(2012).

    [56] A A Lagatsky, S Calvez, J A Cupta, et al. Boadly tunable femtosecond mode locking in a Tm: KYW laser near 2 μm. Optics Express, 19, 9995-10000(2011).

    [57] A Schmidt, Y C Sun, D I Yeom, et al. Femtosecond pulses near 2 µm from a Tm: KLuW laser mode locked by a single walled carbon nanotube saturable absorber. Applied Physics Express, 5, 2704(2012).

    [58] W J Ling, T Xia, Z Dong, et al. 1.91 μm Passively continuous-wave mode-locked Tm: LiLuF4 laser. Optics & Laser Technology, 108, 364-367(2018).

    [59] W J Ling, T Xia, Z Dong, et al. Passively mode-locked Tm, Ho: LLF laser at 1895 nm. Journal of Optics, 48, 209-213(2019).

    [60] Cheng S J. Design fluescence properties of rare earth doped fluide glass ceramics [D]. Nanjing: Nanjing University of Posts Telecommunications, 2015: 13. (in Chinese)

    [61] R Nikov, N Nedyalkov, M Koleva, et al. Femtosecond laser modification of the optical properties of glass containing noble-metal nanoparticles. Journal of Physics Conference Series, 1492, 012058(2020).

    [62] F X Gan, Z H Jiang, Y S Cai. Research on Nd+ activated inorganic glass state acceptor laser emitter working material. Science Bulletin, 1, 54-57(1964).

    [63] Dai S X, Peng B, Wang X. 4.35 μm progress in the research of sulfur based glass materials with m medium infrared light emission [C]National Special Glass Conference of Special Glass Branch of China Silicate Society, 2008. (in Chinese)

    [64] Y Zhang, L Xia, X Shen, et al. Broadband mid-infrared emission in Dy3+/Er3+ co-doped tellurite glass. Journal of Luminescence, 236, 118078(2021).

    [65] F Fusari, A A Lagatsky, G Jose, et al. Femtosecond mode-locked Tm3+and Tm3+-Ho3+ doped 2 μm glass lasers. Optics Express, 18, 22090-22098(2010).

    [66] S E Hatch, W F Parsons, R J Weagley. Hot-pressed polycrystalline CaF2 Dy2+ laser. Applied Physics Letters, 5, 153-154(1964).

    [67] Y C Wang, R J Lan, X Mateos, et al. Broadly tunable model-locked Ho: YAG ceramic laser around 2.1 μm. Optics Express, 24, 18003-18012(2016).

    [68] A A Lagatsky, O L Antipov, W Sibbett. Boradly tunable femt-osecond Tm: Lu2O3 ceramic laser operating around 2070 nm. Optics Express, 20, 19349-19354(2012).

    [69] R Gaumé, B Viana, D Vivien, et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals. Laser Physics Letters, 87, 1355-1357(2003).

    [70] A X Lin, A Ryasnyanskiy, J Toulouse. Fabrication and character rization of awater-freemid-infrared fluoro tellurite glass. Optics Letters, 36, 740-742(2011).

    Weijun Ling, Wenting Wang. Research progress of 2 μm ultrashort pulse all solid state thulium doped oscillator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210346
    Download Citation