• Laser & Optoelectronics Progress
  • Vol. 59, Issue 13, 1336002 (2022)
Hui Zhang*, Peixuan Li*, Xihua Zou*, Wenlin Bai*, Wei Pan*, and Lianshan Yan*
Author Affiliations
  • School of Information Science & Technology, Center for Information Photonics & Communications, Southwest Jiaotong University, Chengdu 610031, Sichuan , China
  • show less
    DOI: 10.3788/LOP202259.1336002 Cite this Article Set citation alerts
    Hui Zhang, Peixuan Li, Xihua Zou, Wenlin Bai, Wei Pan, Lianshan Yan. [J]. Laser & Optoelectronics Progress, 2022, 59(13): 1336002 Copy Citation Text show less
    References

    [1] Busari S A, Huq K M S, Mumtaz S et al. Millimeter-wave massive MIMO communication for future wireless systems: a survey[J]. IEEE Communications Surveys & Tutorials, 20, 836-869(2018).

    [2] Ntontin K, Verikoukis C. System-level analysis of a self-fronthauling and millimeter-wave cloud-RAN[J]. IEEE Transactions on Communications, 68, 7762-7778(2020).

    [3] Pan C H, Elkashlan M, Wang J Z et al. User-centric C-RAN architecture for ultra-dense 5G networks: challenges and methodologies[J]. IEEE Communications Magazine, 56, 14-20(2018).

    [4] Sundaresan K, Arslan M Y, Singh S et al. FluidNet: a flexible cloud-based radio access network for small cells[J]. ACM Transactions on Networking, 24, 915-928(2016).

    [5] Liu X, Zeng H Y, Chand N et al. Efficient mobile fronthaul via DSP-based channel aggregation[J]. Journal of Lightwave Technology, 34, 1556-1564(2016).

    [6] Alavi S E, Soltanian M R K, Amiri I S et al. Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul[J]. Scientific Reports, 6, 19891(2016).

    [7] Dat P T, Kanno A, Inagaki K et al. High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave[J]. Journal of Lightwave Technology, 32, 3910-3923(2014).

    [8] Hasanuzzaman G K M, Shams H, Renaud C C et al. Tunable THz signal generation and radio-over-fiber link based on an optoelectronic oscillator-driven optical frequency comb[J]. Journal of Lightwave Technology, 38, 5240-5247(2020).

    [9] Tian Y, Lee K L, Lim C et al. 60 GHz analog radio-over-fiber fronthaul investigations[J]. Journal of Lightwave Technology, 35, 4304-4310(2017).

    [10] Ishimura S, Bekkali A, Tanaka K et al. 1.032-Tb/s CPRI-equivalent rate IF-over-fiber transmission using a parallel IM/PM transmitter for high-capacity mobile fronthaul links[J]. Journal of Lightwave Technology, 36, 1478-1484(2018).

    [11] Sung M, Cho S H, Kim J et al. Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave[J]. Journal of Lightwave Technology, 36, 601-609(2018).

    [12] Liu C, Zhang L, Zhu M et al. A novel multi-service small-cell cloud radio access network for mobile backhaul and computing based on radio-over-fiber technologies[J]. Journal of Lightwave Technology, 31, 2869-2875(2013).

    [13] Chen Y W, Shen S Y, Zhou Q et al. A reliable OFDM-based MMW mobile fronthaul with DSP-aided sub-band spreading and time-confined windowing[J]. Journal of Lightwave Technology, 37, 3236-3243(2019).

    [14] Cui Y, Zhang M, Wang D S et al. Bit-based support vector machine nonlinear detector for millimeter-wave radio-over-fiber mobile fronthaul systems[J]. Optics Express, 25, 26186-26197(2017).

    [15] Tang Z Z, Zhang F Z, Pan S L. 60-GHz RoF system for dispersion-free transmission of HD and multi-band 16QAM[J]. IEEE Photonics Technology Letters, 30, 1305-1308(2018).

    [16] Browning C, Martin E P, Farhang A et al. 60 GHz 5G radio-over-fiber using UF-OFDM with optical heterodyning[J]. IEEE Photonics Technology Letters, 29, 2059-2062(2017).

    [17] Tian Y, Song S J, Powell K et al. A 60-GHz radio-over-fiber fronthaul using integrated microwave photonics filters[J]. IEEE Photonics Technology Letters, 29, 1663-1666(2017).

    [18] Argyris N, Giannoulis G, Kanta K et al. A 5G mmWave fiber-wireless IFoF analog mobile fronthaul link with up to 24 Gb/s multiband wireless capacity[J]. Journal of Lightwave Technology, 37, 2883-2891(2019).

    [19] Ummethala S, Harter T, Koehnle K et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator[J]. Nature Photonics, 13, 519-524(2019).

    [20] Tien Dat P, Yamaguchi Y, Kanno A et al. Millimeter-wave radio-over-fiber system using optical phase modulation and photonic downconversion for uplink fronthaul transmission[J]. Optics Letters, 46, 2493-2496(2021).

    [21] Tang Z Z, Li Y F, Yao J P et al. Photonics-based microwave frequency mixing: methodology and applications[J]. Laser & Photonics Reviews, 14, 1800350(2020).

    [22] Li B Y, Wei W, Han D M et al. Remote broadband RF signal down-conversion with stable phase and high efficiency using a sideband optical phase-locked loop[J]. Optics Express, 28, 12588-12598(2020).

    [23] Pagán V R, Murphy T E. Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering[J]. Optics Letters, 40, 2481-2484(2015).

    [24] Li P X, Pan W, Zou X H et al. Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting[J]. IEEE Journal of Quantum Electronics, 53, 16946034(2017).

    [25] Sun C K, Orazi R J, Pappert S A et al. A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation[J]. IEEE Photonics Technology Letters, 8, 1166-1168(1996).

    [26] Kuri T, Toda H, Kitayama K. Dense wavelength-division multiplexing millimeter-wave-band radio-on-fiber signal transmission with photonic downconversion[J]. Journal of Lightwave Technology, 21, 1510-1517(2003).

    [27] Kuri T, Kitayama K. Novel photonic downconversion technique with optical frequency shift for millimeter-wave-band radio-on-fiber systems[J]. IEEE Photonics Technology Letters, 14, 1163-1165(2002).

    [28] Li P X, Pan W, Zou X H et al. High-efficiency photonic microwave downconversion with full-frequency-range coverage[J]. IEEE Photonics Journal, 7, 15250220(2015).

    [29] Microwave AT. Full V band active multiplier[EB/OL]. https://www.atmicrowave.com/uploads/PDF/AT-AM4-5075-15.pdf

    [30] Schmogrow R, Nebendahl B, Winter M et al. Error vector magnitude as a performance measure for advanced modulation formats[J]. IEEE Photonics Technology Letters, 24, 61-63(2012).

    [31] Shafik R A, Rahman M S, Islam A R. On the extended relationships among EVM, BER and SNR as performance metrics[C], 408-411(2006).

    Hui Zhang, Peixuan Li, Xihua Zou, Wenlin Bai, Wei Pan, Lianshan Yan. [J]. Laser & Optoelectronics Progress, 2022, 59(13): 1336002
    Download Citation