• Journal of Inorganic Materials
  • Vol. 36, Issue 6, 570 (2021)
Xiaowei WU1、2 and Jiayan LI1、2、*
Author Affiliations
  • 11. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Dalian 116024, China
  • 22. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.15541/jim20200361 Cite this Article
    Xiaowei WU, Jiayan LI. Texturing Technology on Multicrystalline Silicon Wafer by Metal-catalyzed Chemical Etching: a Review[J]. Journal of Inorganic Materials, 2021, 36(6): 570 Copy Citation Text show less
    References

    [1] A ADEBISI J, O AGUNSOYE J, A BELLO S et al. Potential of producing solar grade silicon nanoparticles from selected agro-wastes: a review. Sol. Energy, 142, 68-86(2017).

    [2] Y YIN, Y GAO, X LI et al. Experimental study on slicing photovoltaic polycrystalline silicon with diamond wire saw. Mat. Sci. Semicon. Proc., 106, 104779(2020).

    [3] K BASHER M, R MISHAN, S BISWAS et al. Study and analysis the Cu nanoparticle assisted texturization forming low reflective silicon surface for solar cell application. AIP Adv., 9, 075118(2019).

    [4] C ANDREANI L, A BOZZOLA, P KOWALCZEWSKI et al. Silicon solar cells: toward the efficiency limits. Adv. Phys. X, 4, 1548305(2019).

    [5] J HUANG B, J ZHAO, Y CHAI J et al. Environmental influence assessment of China's multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process. Sol. Energy, 143, 132-141(2017).

    [6] J MÖLLER H, C FUNKE, M RINIO et al. Multicrystalline silicon for solar cells. Thin Solid Films, 487, 179-187(2005).

    [7] B MEINEL, T KOSCHWITZ, C BLOCKS et al. Comparison of diamond wire cut and silicon carbide slurry processed silicon wafer surfaces after acidic texturisation. Mat. Sci. Semicon. Proc., 26, 93-100(2014).

    [8] F WU Y, M CHEN Y. Separation of silicon and silicon carbide using an electrical field. Sep. Purif. Technol., 68, 70-74(2009).

    [9] W HARDIN C, J QU, J SHIH A. Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers. Mater. Manuf. Processes, 19, 355-367(2004).

    [10] B QIU M, H HUANG Y, D LIU Z et al. A review of the fabrication methods for solar silicon wafer. Mechanical Science and Technology for Aerospace Engineering, 27, 1017-1020(2008).

    [11] E CAI, B TANG, R FAHRNER W et al. Characterization of the Surfaces Generated by Diamond Cutting of Crystalline Silicon, 1884-1886(2011).

    [12] A CHEN C C, P H CHAO. Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cell. Adv. Mater. Res., 177-180(2010).

    [13] A BIDIVILLE, K WASMER, R KRAFT et al. Diamond Wire-sawn Silicon Wafers-from the Lab to the Cell Production, 1400-1405(2009).

    [14] M LIPPOLD, F BUCHHOLZ, C GONDEK et al. Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF-HNO3-H2SO4 mixtures. Sol. Energ. Mat. Sol. C, 127, 104-110(2014).

    [15] R MEMMING, G SCHWANDT. Anodic dissolution of silicon in hydrofluoric acid solutions. Surf. Sci., 4, 109-124(1966).

    [16] G XIAO Z, Y GENG G, Q WEI X et al. On the mechanism of the vapor etching of diamond wire sawn multi-crystalline silicon wafers for texturing. Mat. Sci. Semicon. Proc., 53, 8-12(2016).

    [17] H JANSEN, M DEBOER, R LEGTENBERG et al. The black silicon method-a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng., 5, 115-120(1995).

    [18] P HUANG Z, N GEYER, P WERNER et al. Metal-assisted chemical etching of silicon: a review. Adv. Mater., 23, 285-308(2011).

    [19] C HSU, R WU J, T LU Y et al. Fabrication and characteristics of black silicon for solar cell applications: an overview. Mat. Sci. Semicon. Proc., 25, 2-17(2014).

    [20] D DIMOVA-MALINOVSKA, M SENDOVA-VASSILEVA, N TZENOV et al. Preparation of thin porous silicon layers by stain etching. Thin Solid Films, 297, 9-12(1997).

    [21] X LI, W BOHN P. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett., 77, 2572-2574(2000).

    [22] P HUANG Z, Y WU, H FANG et al. Large-scale Si1-xGex quantum dot arrays fabricated by templated catalytic etching. Nanotechnology, 17, 1476-1480(2006).

    [23] Z HUANG, T SHIMIZU, S SENZ et al. Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett., 9, 2519-2525(2009).

    [24] Q PENG K, J HU J, J YAN Y et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater., 16, 387-394(2006).

    [25] S CHATTOPADHYAY, W BOHN P. Direct-write patterning of microstructured porous silicon arrays by focused-ion-beam Pt deposition and metal-assisted electroless etching. J. Appl. Phys., 96, 6888-6894(2004).

    [26] C NIU Y, T LIU H, J LIU X et al. Study on nano-pores enlargement during Ag-assisted electroless etching of diamond wire sawn polycrystalline silicon wafers. Mat. Sci. Semicon. Proc., 56, 119-126(2016).

    [27] Y SU G, W DAI X, C SUN H et al. The study of the defect removal etching of black silicon for diamond wire sawn multi-crystalline silicon solar cells. Sol. Energy, 170, 95-101(2018).

    [28] F CAO, X CHEN K, J ZHANG J et al. Next-generation multi-crystalline silicon solar cells: diamond-wire sawing, nano-texture and high efficiency. Sol. Energ. Mat. Sol. C, 141, 132-138(2015).

    [29] A KUMAGAI. Texturization using metal catalyst wet chemical etching for multicrystalline diamond wire sawn wafer. Sol. Energ. Mat. Sol. C, 133, 216-222(2015).

    [30] K PENG, H FANG, J HU et al. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chemistry, 12, 7942-7947(2006).

    [31] F ZHUANG Y, H ZHONG S, G HUANG Z et al. Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells. Sol. Energ. Mat. Sol. C, 153, 18-24(2016).

    [32] F ZHANG P, R JIA, K TAO et al. The influence of Ag-ion concentration on the performance of mc-Si silicon solar cells textured by metal assisted chemical etching (MACE) method. Sol. Energ. Mat. Sol. C, 200, 109983(2019).

    [33] K WU C, S ZOU, Y ZHU J et al. Forming submicron in micron texture on the diamond-wire-sawn mc-Si wafer by introducing artificial defects. Prog. Photovoltaics, 28, 788-797(2020).

    [34] S ZOU, Y YE X, K WU C et al. Complementary etching behavior of alkali, metal-catalyzed chemical, and post-etching of multicrystalline silicon wafers. Prog. Photovoltaics, 27, 511-519(2019).

    [35] P LI X, K TAO, D ZHANG et al. Development of additive-assisted Ag-MACE for multicrystalline black Si solar cells. Electrochem. Commun., 113, 106686(2020).

    [36] P LI X, B GAO Z, D ZHANG et al. High-efficiency multi-crystalline black silicon solar cells achieved by additive assisted Ag-MACE. Sol. Energy, 195, 176-184(2020).

    [37] Q PENG K, J ZHU. Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim Acta, 49, 2563-2568(2004).

    [38] M CAO, Y LI S, X DENG J et al. Texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe(III) in hydrofluoric acid solution. Appl Surf. Sci., 372, 36-41(2016).

    [39] X ZOU Y, S XI F, J QIU J et al. Cu-assisted chemical etching of diamond wire sawn multicrystalline silicon wafers for texturing. China Surface Engineering, 30, 59-66(2017).

    [40] Z SHENG G, X ZOU Y, Y LI S et al. Controllable nano-texturing of diamond wire sawing polysilicon wafers through low-cost copper catalyzed chemical etching. Mater. Lett., 221, 85-88(2018).

    [41] P WANG, Q XIAO S, R JIA et al. 18.88%-efficient multi-crystalline silicon solar cells by combining Cu-catalyzed chemical etching and post-treatment process. Sol Energy, 169, 153-158(2018).

    [42] W ZHA J, T WANG, F PAN C et al. Constructing submicron textures on mc-Si solar cells via copper-catalyzed chemical etching. Appl. Phys. Lett., 110, 093901(2017).

    [43] F ZHENG C, L SHEN H, T PU et al. Fabrication and property of anti-reflection structures on multicrystalline silicon by Ag and Cu dually assisted chemical etching. J. Funct. Mater., 48, 1230-1235(2017).

    [44] D WANG S, W CHEN T. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst. Appl. Surf. Sci., 444, 530-541(2018).

    [45] W CHEN, P LIU Y, T WU J et al. High-efficient solar cells textured by Cu/Ag-cocatalyzed chemical etching on diamond wire sawing multicrystalline silicon. ACS Appl. Mater. Inter., 11, 10052-10058(2019).

    [46] H YUE Z, L SHEN H, Y JIANG et al. Novel and low reflective silicon surface fabricated by Ni-assisted electroless etching and coated with atomic layer deposited Al2O3 film. Appl. Phys. A-Mater., 114, 813-817(2013).

    [47] V TAKALOO A, F ES, G BAYTEMIR et al. Nickel assisted chemical etching for multi-crystalline Si solar cell texturing: a low cost single step alternative to existing methods. Mater. Res. Express, 5, 075506(2018).

    [48] K GAO, L SHEN H, W LIU Y et al. Enhanced etching rate of black silicon by Cu/Ni Co-assisted chemical etching process. Mat. Sci. Semicon. Proc., 88, 250-255(2018).

    [49] A LAI R, M HYMEL T, K NARASIMHAN V et al. Schottky barrier catalysis mechanism in metal-assisted chemical etching of silicon. ACS Appl. Mater. Inter., 8, 8875-8879(2016).

    [50] R MAURYA M, V TOUTAM, P SINGH et al. Optimization of electroless plating of gold during MACE for through etching of silicon wafer. Mat. Sci. Semicon. Proc., 100, 140-144(2019).

    [51] T XIE, V SCHMIDT, E PIPPEL et al. Gold-enhanced low-temperature oxidation of silicon nanowires. Small, 4, 64-68(2008).

    [52] G BAYTEMIR, H CIFTPINAR E, R TURAN. Enhanced metal assisted etching method for high aspect ratio microstructures: applications in silicon micropillar array solar cells. Sol. Energy, 194, 148-155(2019).

    [53] S YAE, Y KAWAMOTO, H TANAKA et al. Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells. Electrochem. Commun., 5, 632-636(2003).

    [54] S CHATTOPADHYAY, X LI, W BOHN P. In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J. Appl. Phys., 91, 6134-6140(2002).

    [55] B ZHU, J LIU W, J DING S et al. Formation mechanism of heavily doped silicon mesopores induced by Pt nanoparticle-assisted chemical etching. J. Phys. Chem. C, 122, 21537-21542(2018).

    [56] J JIN, H SHEN, P ZHENG et al. >20.5% diamond wire sawn multicrystalline silicon solar cells with maskless inverted pyramid like texturing. IEEE J. Photovolt., 7, 1264-1269(2017).

    [57] J SHENG, W WANG, H YE Q et al. MACE texture optimization for mass production of high-efficiency multi-crystalline cell and module. IEEE J Photovolt., 9, 918-925(2019).

    [58] Y SU G, R JIA, W DAI X et al. The influence of black silicon morphology modification by acid etching to the properties of diamond wire sawn multicrystalline silicon solar cells. IEEE J. Photovolt., 8, 937-942(2018).

    [59] Y JIANG, L SHEN H, T PU et al. Hybrid process for texturization of diamond wire sawn multicrystalline silicon solar cell. Phys. Status Solidi-R, 10, 870-873(2016).

    [60] X CHEN K, W ZHA J, Q HU F et al. MACE nano-texture process applicable for both single- and multi-crystalline diamond-wire sawn Si solar cells. Sol. Energ. Mat. Sol. C, 191, 1-8(2019).

    [61] T WU J, P LIU Y, S CHEN Q et al. The orientation and optical properties of inverted-pyramid-like structures on multi-crystalline silicon textured by Cu-assisted chemical etching. Sol. Energy, 171, 675-680(2018).

    [62] F ZHANG P, C SUN H, K TAO et al. An 18.9% efficient black silicon solar cell achieved through control of pretreatment of Ag/Cu MACE. J. Mater. Sci. -Mater. El., 30, 8667-8675(2019).

    [63] F ZHENG C, L SHEN H, T PU et al. High-efficient solar cells by the Ag/Cu-assisted chemical etching process on diamond-wire-sawn multicrystalline silicon. IEEE J. Photovolt., 7, 153-156(2017).

    [64] L SHEN H, Y JIANG. Investigation on multi-crystalline black silicon and high efficiency solar cell based on inverted pyramid antireflective structure. Journal of Nanjing University of Aeronautics & Astronautics, 49, 744-752(2017).

    [65] P SREEJITH K, K SHARMA A, S KUMBHAR et al. An additive-free non-metallic energy efficient industrial texturization process for diamond wire sawn multicrystalline silicon wafers. Sol. Energy, 184, 162-172(2019).

    [66] B LIU Y, N ZHANG J, L WANG et al. An innovative light trapping structure fabrication method on diamond-wire-sawing multi-crystalline silicon wafers. Chemistry Select, 3, 7561-7564(2018).

    Xiaowei WU, Jiayan LI. Texturing Technology on Multicrystalline Silicon Wafer by Metal-catalyzed Chemical Etching: a Review[J]. Journal of Inorganic Materials, 2021, 36(6): 570
    Download Citation