• Advanced Photonics
  • Vol. 6, Issue 5, 056002 (2024)
Blake Wilson1,2,†, Yuheng Chen1,2, Daksh Kumar Singh1,2, Rohan Ojha1..., Jaxon Pottle3, Michael Bezick4, Alexandra Boltasseva1,2, Vladimir M. Shalaev1,2 and Alexander V. Kildishev1,*|Show fewer author(s)
Author Affiliations
  • 1Purdue University, Elmore Family School of Electrical and Computer Engineering, West Lafayette, Indiana, United States
  • 2Quantum Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
  • 3Purdue University, School of Aeronautics and Astronautics, West Lafayette, Indiana, United States
  • 4Purdue University, Department of Computer Science, West Lafayette, Indiana, United States
  • show less
    DOI: 10.1117/1.AP.6.5.056002 Cite this Article Set citation alerts
    Blake Wilson, Yuheng Chen, Daksh Kumar Singh, Rohan Ojha, Jaxon Pottle, Michael Bezick, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev, "Authentication through residual attention-based processing of tampered optical responses," Adv. Photon. 6, 056002 (2024) Copy Citation Text show less
    References

    [1] K. S. Kumar et al. Secure split test techniques to prevent IC piracy for IoT devices. Integration, 58, 390-400(2017).

    [2] Counterfeit chips a problem as global shortage increases semiconductor fraud(2024).

    [3] P. Karazuba. Combating counterfeit chips(2024).

    [4] U. Guin et al. Counterfeit integrated circuits: a rising threat in the global semiconductor supply chain. Proc. IEEE, 102, 1207-1228(2014).

    [5] B. Wilson et al. Empowering quantum 2.0 devices and approaches with machine learning, QTu2A.13(2022).

    [6] K. Kim et al. Massively parallel ultrafast random bit generation with a chip-scale laser. Science, 371, 948-952(2021).

    [7] Y. Yao et al. Clockpuf: physical unclonable functions based on clock networks, 422-427(2013).

    [8] M. Song et al. Colors with plasmonic nanostructures: a full-spectrum review. Appl. Phys. Rev., 6, 041308(2019).

    [9] M. Song et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev., 15, 2000343(2021).

    [10] B. Liu et al. Memristive true random number generator with intrinsic two-dimensional physical unclonable function. ACS Appl. Electron. Mater., 5, 714-720(2023).

    [11] A. Oberoi et al. Secure electronics enabled by atomically thin and photosensitive two-dimensional memtransistors. ACS Nano, 15, 19815-19827(2021).

    [12] P. Ebenezer. Counterfeit mitigation with PUF-embedded readout(2020).

    [13] U. Rührmair, S. Devadas, F. Koushanfar. Introduction to Hardware Security and Trust(2012).

    [14] R. Pappu et al. Physical one-way functions. Science, 297, 2026-2030(2002).

    [15] B. Gassend et al. Silicon physical random functions, 148-160(2002).

    [16] R. Maes. Physically Unclonable Functions, 49-80(2013).

    [17] J. Knechtel et al. Toward physically unclonable functions from plasmonics-enhanced silicon disc resonators. J. Lightwave Technol., 37, 3805-3814(2019).

    [18] Y. Cui et al. Multiplex plasmonic anti-counterfeiting security labels based on surface-enhanced Raman scattering. Chem. Commun., 51, 5363-5366(2015).

    [19] L. P. de Souza et al. Influence of annealing temperature and SN doping on the optical properties of hematite thin films determined by spectroscopic ellipsometry. J. Appl. Phys., 119, 245104(2016).

    [20] A. F. Smith, P. Patton, S. E. Skrabalak. Plasmonic nanoparticles as a physically unclonable function for responsive anti-counterfeit nanofingerprints. Adv. Funct. Mater., 26, 1315-1321(2016).

    [21] O. U. Aydin et al. On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking. Eur. Radiol. Exp., 5, 4(2021).

    [22] E. A. AlBadawy, A. Saha, M. A. Mazurowski. Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med. Phys., 45, 1150-1158(2018).

    [23] M. Livne et al. A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front. Neurosci., 13, 97(2019).

    [24] A. Hilbert et al. Brave-Net: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease. Front. Artif. Intell., 3, 552258(2020).

    [25] K. A. Powell et al. Atlas-based segmentation of temporal bone anatomy. Int. J. Comput. Assist. Radiol. Surg., 12, 1937-1944(2017).

    [26] J. Guenette et al. MR imaging of the extracranial facial nerve with the CISS sequence. Am. J. Neuroradiol., 40, 1954-1959(2019).

    [27] B. Peltenburg et al. PO-0899: tumor volume delineation using non-EPI diffusion weighted MRI and FDG-pet in head-and-neck patients. Radiother. Oncol., 123, S496-S497(2017).

    [28] F. Rizzetto et al. Impact of inter-reader contouring variability on textural radiomics of colorectal liver metastases. Eur. Radiol. Exp., 4, 62(2020).

    [29] M. R. Liechti et al. Manual prostate cancer segmentation in MRI: interreader agreement and volumetric correlation with transperineal template core needle biopsy. Eur. Radiol., 30, 4806-4815(2020).

    [30] C. Chen et al. Tracking pylorus in ultrasonic image sequences with edge-based optical flow. IEEE Trans. Med. Imaging, 31, 843-855(2012).

    [31] A. Vaswani et al. Attention is all you need(2017).

    [32] I. Malkiel et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl., 7, 60(2018).

    [33] L. Mascaretti et al. Designing metasurfaces for efficient solar energy conversion. ACS Photonics, 10, 4079-4103(2023).

    [34] A. P. Vladimirov et al. Assessing fatigue damage in organic glass using optical methods. Opt. Spectrosc., 127, 943-953(2019).

    [35] L. Gonzalez-García et al. Tuning dichroic plasmon resonance modes of gold nanoparticles in optical thin films. Adv. Funct. Mater., 23, 1655-1663(2012).

    [36] M. M. Hawkeye, M. J. Brett. Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A, 25, 1317-1335(2007).

    [37] E. Hutter, J. H. Fendler. Exploitation of localized surface plasmon resonance. Adv. Mater., 16, 1685-1706(2004).

    [38] J. Langer et al. Present and future of surface-enhanced Raman scattering. ACS Nano, 14, 28-117(2020).

    [39] C. Kuemin et al. Oriented assembly of gold nanorods on the single-particle level. Adv. Funct. Mater., 22, 702-708(2011).

    [40] C. Goodall. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc.: Ser. B (Methodol.), 53, 285-321(1991).

    [41] M. Hamilton et al. Unsupervised semantic segmentation by distilling feature correspondences(2022).

    [42] B. Burgstaller, F. Pillichshammer. The average distance between two points. Bull. Am. Math. Soc., 80, 353-359(2009).

    [43] R. Pathria, P. D. Beale. Statistical Mechanics(2011).

    Blake Wilson, Yuheng Chen, Daksh Kumar Singh, Rohan Ojha, Jaxon Pottle, Michael Bezick, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev, "Authentication through residual attention-based processing of tampered optical responses," Adv. Photon. 6, 056002 (2024)
    Download Citation