
- Advanced Photonics
- Vol. 6, Issue 5, 056002 (2024)
Abstract
Keywords
1 Introduction
The semiconductor industry has grown into a $500 billion global market over the last 60 years. However, the semiconductor fabrication pipeline has become fragmented, inadvertently giving rise to a $75 billion counterfeit chip market that jeopardizes safety and security across multiple sectors dependent on semiconductor technologies, such as aviation, communications, quantum, artificial intelligence, and personal finance.1
To combat these difficulties, this study focuses on an optical PUF model utilizing the distance matrix constructed of the positions and radii of random gold nanoparticles.20 The overview process of the PUF tamper detection method is demonstrated in Fig. 1. Due to the extreme difficulty of replicating large sets of nanoparticles with precise positions and radii, the distance matrix acts as the PUF signature. However, we demonstrate that current verification methods for distance matrix PUFs are neither sufficiently scalable nor robust enough for discriminating between natural disturbances and adversarial tampering. First, we take dark-field images of nanoparticles that are randomly distributed. The random positions and radii are extracted using semantic segmentation and labeled clustering. Then, the nanoparticles undergo treatment due to either natural degradation, e.g., minor thermal treatment and packaging abrasions, or adversarial tampering, e.g., substrate tearing, thermal tampering, and refilling. After the nanoparticles are exposed to either kind of treatment, the nanoparticle positions and radii are remeasured, and a new, posttampered distance matrix is compared against the pretampered distance matrices. Previous works use variations in the Hausdorff distance metric to classify pre- and posttampering detection. In addition to the Hausdorff metric, we also apply the Procrustes matrix distance and average-Hausdorff-distance metrics21
Figure 1.PUF sampling process. An overview of the PUF tamper detection method using distance matrices of randomly positioned gold nanoparticles. The process consists of four primary stages. (i) Gold nanoparticles are randomly introduced, serving as a distinct physical system. (ii) The nanoparticles’ distance matrix is recorded and archived in a reference database. (iii) The system may experience external tampering or natural degradation that can modify its initial state. (iv) The distance matrix is reassessed and cross-referenced with the initial database to identify any potential tampering or other changes.
However, under more difficult assumptions of adversarial tampering, both the Hausdorff and Procrustes metrics can be provably tampered with, as we show in Sec. 4. Addressing this gap, we present a novel deep-learning approach using residual, attention-based processing of tampered optical responses (RAPTOR),31
Sign up for Advanced Photonics TOC. Get the latest issue of Advanced Photonics delivered right to you!Sign up now
Overall, the novelty of our approach is demonstrated as
- (1)being the first method to apply an attention mechanism for PUFs authentication, using the nanoparticle radii as soft weights and the posttamper distance matrix as a value matrix;
- (2)developing data set generation methods for gold nanoparticle PUFs for which there is no existing public data set;
- (3)achieving high verification accuracy under difficult, real-world tampering schema using machine learning to verify the gold nanoparticle PUFs.
We begin by discussing the importance of optical PUFs for semiconductor authentication and then spotlight the challenges in current verification methods. We then introduce a statistical approach to overcoming these challenges by formalizing the problem of adversarial tampering detection. We conclude by providing accuracy and speed results for both the average distance analysis and RAPTOR.
2 Background
2.1 Physical Unclonable Functions
PUFs are distinctive physical systems characterized by a unique, irreplicable, physical fingerprint. PUFs yield a probability distribution over random measurements of a system that is practically unclonable due to current technology, economic factors, or time constraints. That is, given two random physical systems, the probability of obtaining the same distribution of measurements is extremely low. An adversary will attempt to replicate the physical system that yields the measurement distribution in order to spoof any detection schemes. The detection of adversarial tampering features introduced during the spoofing process is based on the following steps: (1) PUF system preparation, (2) pretamper measurements, (3) random tampering, and (4) posttampering adversarial detection. Previous works primarily implement this detection method using optical PUFs, which construct unique scattering and/or spectral responses of random media.9,14 Optical PUFs are easy to fabricate and quick to measure, making them ideal for proof-of-concept experiments. Likewise, several other physical systems exhibit similar levels of randomness and measurability, including resonators,17 laser-induced speckle patterns,6 memristors,10 memtransistors,10 and intentional damaging in glass.34 However, nanoscale metallic optical systems, otherwise known as plasmonic PUFs, have been rising in popularity due to their strong scattering response at optical wavelengths, increasing robustness during posttampering measurements. Among the early instances of plasmonic PUFs are responses from dichroic gold barcodes,35 anisotropic gold nanoparticles grown within thin silicon dioxide films,36 distinct surface plasmon resonance modes,37 unique molecular configurations embedded in multilayer structures,18,38 and 100 nm gold nanorods.39 Nevertheless, while serving as viable PUF prototypes, these methods grapple with scalability challenges, either in fabrication or measurement robustness. To address these limitations, we reintroduce a streamlined, plasmonic PUF suitable for large-scale applications: the distance matrix verification of gold nanoparticles.20 As we argue in Appendix A (Sec. 6.4), gold nanoparticles are sufficiently random during fabrication and can easily be measured using dark-field microscopy, a readily available technique that can integrate seamlessly into any stage of the semiconductor fabrication pipeline.
2.2 Distance Matrix PUFs
Figure 2 shows the distance matrix extraction process based on gold nanoparticle PUFs from dark-field images. The detailed segmentation process is found in Sec. 4.1 and Appendix A (Sec. 6.3). Distance matrix PUFs are given by the distance matrix
Figure 2.Distance matrix extraction from dark-field images. Nanoparticle dark-field images of size
3 Methods
Figure 3 presents our machine-learning-assisted authentication flowchart from fabrication to tampering detection. Consider a physical system state
Figure 3.Machine-learning-assisted authentication is trained by classifying synthetic posttamper measurements as being either adversarially tampered or naturally degraded, indicated by
3.1 Nanoparticles for the PUF-D Problem
The gold nanoparticles are uniformly distributed on the substrate
3.2 Adversarial Tampering
During the random tampering step, the system may undergo either natural changes given by
Figure 4.Adversarial tampering is introduced through tearing of the substrate, thereby separating the gold nanoparticles according to their distance from the tear line, and filling the tear with new nanoparticles uniformly distributed in the tear to match the original distribution. The tearing of the substrate is modeled as a random cut that shifts the nanoparticles based on the inverse square root of the perpendicular distance to the cut. (a), (b) The tearing coefficients
3.3 Distance Matrix Authentication
Three analytical distance metrics are explored for distance matrix authentication: Hausdorff distance, Procrustes distance, and the average Hausdorff distance (AHD). For each of these metrics, the binary classification threshold is determined via logistic regression. If the distance between two matrices is above the logistic threshold, the posttamper matrix is considered too dissimilar to arise from the environment or natural degradation. Otherwise, the matrix is considered to have an acceptable level of natural changes and is therefore authentic.
3.3.1 Hausdorff metric
The Hausdorff distance metric
3.3.2 Procrustes metric
An alignment matrix is a matrix that aligns two sets of multivariate data by transforming one into the other. Procrustes analysis is a statistical method that finds the optimal alignment matrix
Ordering and data set size constraints make Procrustes a less reliable method for distance matrix matching. Likewise, finding the optimal alignment matrix is an iterative and time-consuming process compared to Hausdorff.
3.3.3 Average Hausdorff distance metric
An average-nearest-neighbor approach offers a more robust solution in practice than the Hausdorff and Procrustes metrics. Rather than simply considering the maximum nearest neighbor, it considers all nearest neighbors and is thus less sensitive to slight changes in any single nanoparticle position.21 The AHD is defined as
Despite the previously reported 100% accuracy of distance matrix verification schemes involving a Hausdorff-inspired metric similar to AHD,20 we demonstrate in Sec. 4.2 that under more difficult adversarial tampering conditions, AHD eclipses both Hausdorff and Procrustes metrics, but is still beaten by RAPTOR.
3.4 RAPTOR
RAPTOR (Fig. 5) takes a more supervised approach to compute the authenticity of a distance matrix. For each nanoparticle
Figure 5.RAPTOR uses an attention mechanism for prioritizing nanoparticle correlations across pretamper and posttamper samples before passing them into a residual, attention-based deep convolutional classifier. (a) RAPTOR takes the top 56 nanoparticles in descending order of radii to construct the distance matrices
This mechanism zeroes out rows in the posttamper matrix
4 Results and Discussion
4.1 Semantic Segmentation
To reliably extract the nanoparticle centers and radii, we employ semantic segmentation networks to separate the image into two classes: nanoparticle and dark-field background. First, we trained the unsupervised semantic segmentation network STEGO as ground-truth labels for a data set of 10,000 dark-field images.41 We chose STEGO due to its prominence in the literature in assigning meaningful and high-quality segmentation to unlabeled data. The training data set for STEGO is created by randomly selecting and positioning gold nanoparticles obtained from a data set of 2400 gold nanoparticles extracted from 40 dark-field images. Particle extraction is performed via brightness thresholding at 4% intensity, followed by regional clustering and is manually verified for each input image. A minimum pattern radius of
STEGO is very powerful but slow for simple semantic segmentation. Hence, we train both a lightweight ResNet-based attention convolutional neural network and a Gaussian blurring filter for mimicking STEGO. Overall, as demonstrated in Table 1, our CNN model and Gaussian filters achieve binary cross-entropy losses of
Task | Method | Average Accuracy (%) | Computation Time |
Distance matrix extraction | STEGO | 100% (ground truth) | 24 min for 1000 images |
ResNet attention CNN | 27 ms for 1000 images | ||
Gaussian blur | 0.56 (BCE) or 99% | 33 ms for 1000 images | |
Discrimination | RAPTOR | 97.6% | 80 ms for 1000 matrices |
AHD | 91.2% | 13.5 ms for 1000 matrices | |
Hausdorff | 54.9% | 22.9 ms for 1000 matrices | |
Procrustes | 58.2% | 3.30 s for 1000 matrices |
Table 1. Overall performance comparison of each method for distance matrix extraction and discrimination tasks. For all results in the table, a 1000-sample tensor was loaded onto an NVIDIA T4 GPU (except Procrustes, which used all CPU RAM) and batched at maximum capacity for the particular model. Accuracy is measured by the number of correct pixels or authentication classifications over the total. For semantic segmentation, we include the BCE loss to show a marginal advantage in using ResNet over Gaussian blur. The computation time is measured by preloading all data onto an NVIDIA T4 GPU or CPU RAM before recording the start time.
4.2 Tampering Discrimination
The tampering data set is generated synthetically at run-time offline from semantic segmentation. A substrate of size
Table 1 shows the average accuracy and computation times of RAPTOR alongside the analytical methods. RAPTOR has the highest average accuracy, correctly detecting tampering in 97.6% of distance matrices under worst-case-scenario tampering assumptions and exceeding the performance of the Hausdorff, Procrustes, and AHD methods by 40.6%, 37.3%, and 6.4%, respectively. The AHD has the fastest computation time in discrimination tasks and the highest accuracy among the three analytical methods.
5 Conclusion
In this work, we demonstrate the robustness of a new RAPTOR for the authentication of semiconductor devices, using random pattern arrays of gold nanoparticles as distance-matrix-based optical PUFs. The arrays are imaged using dark-field microscopy, and the positions and radii of individual particle patterns are extracted using semantic segmentation and labeled clustering. We introduce difficult, yet realistic, adversarial tampering features through tearing and substrate refilling, or natural deviations through thermal noise with varying levels of substrate heating. We demonstrate that RAPTOR achieves a tampering accuracy of 97.6%, greatly outperforming the Hausdorff, Procrustes, and AHD distance metrics by 40.6%, 37.3%, and 6.4%, respectively. These results indicate that RAPTOR significantly outperforms known classical distance matrix metric methods for authenticating PUFs built on the random arrays of gold nanoparticles in accuracy and speed.
The ease of fabrication of gold nanoparticles, along with rapid and robust tampering detection with RAPTOR, opens up a large opportunity for the adoption of machine-learning-based tampering detection schemes in the semiconductor industry. However, more work is required in material development to ensure that these methods are robust to unforeseen types of tampering and natural degradation. Furthermore, hyperparameter optimization and alternative deep networks may improve the speed or accuracy of RAPTOR. While our scheme greatly improves on the core bottlenecks found in these verification schemes, future work could consider the computation of the distance matrices directly without labeled clustering, or a full end-to-end network that does not use semantic segmentation as an intermediate step in the verification process.
6 Appendix A: PUFs and Data Set
6.1 Nanoparticle PUFs Fabrication
A diluted nanoparticle suspension (
6.2 Optical Imaging
The dark-field optical imaging system consists of a Keyence VHX-6000 digital microscope with a high-brightness LED light source, a 1/1.8-in. CMOS image sensor with virtual pixels 1600 (
6.3 Synthetic Dark-Field Image Dataset Generation and Segmentation
We built a data set of 10,000 images by augmenting 40 dark-field images. Over 2400 nanoparticle bounding boxes are extracted from 40 source images via connectivity-based clustering of thresholded image segments. Augmented images are generated by randomly placing nanoparticles from the set of bounding boxes in uniformly distributed positions. To ensure maximal variability in the augmented data set, we apply random rotation, shear, and additive noise transformations to each particle before placement. Due to the resolution of the dark-field microscope, we only consider nanoparticle scattering patterns with radii greater than
A ResNet-based convolutional neural network and a Gaussian filter are demonstrated to accurately segment 1000 dark-field images in only 27 and 33 ms, respectively. Each of these methods achieves 99% segmentation accuracy, greatly outperforming the classical methods and the ground truth unsupervised segmentation network STEGO in speed with negligible error in accuracy. (It takes 24 min for STEGO to segment 1000 images.) These segmented images are postprocessed for reliable position and radii extraction using labeled clustering.
6.4 Uniformity of PUFs
For a normalized uniform distribution, the expected distance between any two points is given exactly by42
6.5 Parameters Choices
Our study provides a research-oriented example to demonstrate a comprehensive feasibility study. Forming an optimal or adaptive threshold for the following parameters may require additional study with auxiliary training and analysis, especially for industry-level systems.
- •2400 gold particles: The dark-field image data set must be augmented to contain maximally varied nanoparticles resembling a wide variety of real-life conditions. Also, for noninteracting scatterers, when we have a sufficiently large number of scatterers, we could apply statistical or average properties reliably in statistical mechanics and condensed matter physics.43 To this end, we sample from 2400 nanoparticles that were extracted from an original data set of 20 dark-field images. Extracted nanoparticles were additionally transformed (rotations and shear transformations) to maximize the diversity of segmentation shapes. We found this level of variety to be sufficient to demonstrate the dexterity of tested segmentation techniques after experiments.
- •4% intensity brightness threshold: The original data set nanoparticle extraction was manually verified. A 4% brightness magnitude threshold was chosen for our specific imaging procedure. As stated above, an optimal or adaptive threshold may require additional study. For STEGO and attention CNN segmentation methods, brightness thresholding is not used. For Gaussian blur-based segmentation, a brightness threshold can be manually chosen to match imaging conditions or optimized to match the semantics of the former methods.
- •Minimum pattern radius of
: The minimal radius was enforced for the original data set creation to discern the particles from noise, since it was a typical gold nanoparticle scattering pattern radii distribution observed during the fabrication of samples and optical characterization of dark-field images. Here, we assume that particles are noninteracting. Otherwise, the scattering pattern may reach substantially larger radii. During verification, this minimal radius would be implicitly learned and optimized by the chosen segmentation method. - •79 particles per image (
) and source dimensions ( at ): Particle density is a function of molecular interaction of gold nanoparticles as well as other fabrication parameters and is chosen to reflect densities seen in the original dark-field images (this density is uniform and consistent across samples, as described in Section 6.4). Image dimensions are arbitrary with respect to segmentation and are chosen simply to reflect typical imaging parameters. - •
size substrate filled with a nanoparticle density of 100 per unit square: A frame was filled with nanoparticles so that a randomly placed canvas of nanoparticles could be “imaged” out of a larger set. This approach simulated framing imprecision in real-world substrate imaging and allowed us to determine which methods were robust against that translational framing error. Nanoparticle density is relevant to tamper detection, since the number of nanoparticles within a unit frame determines the amount of information available to discrimination algorithms. We chose 100 to match dark-field image nanoparticle density upon sampling of a square subset from a image. - •Natural degradation is introduced through a simple displacement of nanoparticles by a factor of 0.05: To mimic the extreme physical tampering behavior, we chose to translate particles up to 5% image width to reflect a worse-than-expected case scenario of PUF degradations. However, this number could be changed depending on the real-life packaging degradation measured for a particular packaging type.
7 Appendix B: Authentication Methods
7.1 RAPTOR Algorithmic Overview
Inputs:
- •Pre-/posttamper nanoparticle distance matrices:
, ( tensors) - •Pre-/posttamper nanoparticle radii:
, ( vectors)
RAPTOR:
- •
← normalization of Euclidean distances between elements of particle radii vectors , - •Soft weights ← Softmax of
matrix divided by a trained parameter. - •Attention matrix:
← attention matrices for all nanoparticles encoding predicted particle correspondence between pre-/posttamper systems - •ResNet encoded particle correspondence:
← trained ResNet( , ) - •ResNet classifier: residual/attention blocks and a fully connected layer
Outputs:
- •Likelihood of adversarial tampering during transit:
7.2 Analytical Methods
We introduce statistical authentication methods using Hausdorff, Procrustes, and AHD metrics and benchmark their performance in authenticating distance matrices extracted from dark-field images. All learning is performed in the same Jupyter environment on an NVIDIA T4 GPU with 16 GB of GPU RAM and an Intel(R) Xeon(R) CPU running at 2.30 GHz with 12.7 GB of system RAM. Each discrimination model is trained for 5000 epochs with a mini-batch of 100 random graph instances with random tampering, as discussed in Sec. 4.2. Training graphs are randomly generated at training time to prevent overfitting. Our validation step measures the average accuracy across the most recent 500 epochs. Reported accuracy is the maximum accuracy achieved by each discrimination method during the validation step.
7.3 Alternative Deep-Learning Networks
In an attempt to compare against other deep-learning methods, we used the same data fed into RAPTOR with different networks. We tried deep feed-forward multilayer perceptron networks, Siamese graph encoder networks, and deep residual convolutional layers. However, these were not able to consistently outperform the AHD, achieving accuracies below 70%. We also attempted to use the AHD metric as a resource for these networks, but these networks relied too heavily on the metric and converged to the same performance with minimal improvements below RAPTOR.
Blake A. Wilson earned his PhD at Purdue University in Electrical and Computer Engineering. He now works as a Research Scientist at Quantinuum, UK, working on generative AI, categorical machine learning and quantum algorithms.
Yuheng Chen is a third-year PhD student at the Elmore Family School of Electrical and Computer Engineering, Purdue University. His research focuses on the meeting point of AI, physics, and nanodevices, including AI-driven inverse design in photonic/quantum devices, generative machine learning model application exploration, and photonic/quantum devices electromagnetic simulation.
Daksh Kumar Singh is an undergraduate research assistant pursuing an integrated bachelors and masters in electrical and computer engineering at Purdue University. Currently focused on enhancing nanofabrication, characterization, and data analysis techniques through quantum algorithms and machine learning.
Rohan Ojha is an undergraduate electrical engineering student at Purdue University, specializing in microelectronics/semiconductors and quantum technology. At Purdue’s Quantum Science and Engineering Institute, he researches machine learning applications in photonics. He interned at Sandia National Laboratories working in quantum error correction. He plans to pursue a PhD in quantum technology.
Jaxon Pottle: Biography is not available.
Michael Bezick is a rising junior undergraduate research assistant in computer science at Purdue University, with a passion for machine learning. He focuses on applications of generative models, such as variational autoencoders and diffusion models, to nanophotonic optimization problems. He plans to pursue a PhD in machine learning to contribute to the advancement of the field and further apply himself in industry post-graduation.
Alexandra Boltasseva received her PhD from the Technical University of Denmark and is currently the Ron and Dotty Garvin Tonjes Distinguished Professor of Electrical and Computer Engineering at Purdue University where she specializes in nanophotonics, optical metamaterials, and quantum photonics. As Purdue’s Discovery Park fellow, she leads the university-wide multidisciplinary Big Idea Challenge program in quantum information science and technology/security/health. She was editor-in-chief of the Optical Society of America’s Optical Materials Express journal.
Vladimir M. Shalaev, scientific director for nanophotonics at Birck Nanotechnology Center and distinguished professor of electrical and computer engineering at Purdue University, specializes in nanophotonics, plasmonics, optical metamaterials, and quantum photonics. He has received numerous awards, including APS Frank Isakson Prize, Max Born Award, etc. He is recognized as a highly cited researcher in physics by the Web of Science 2017–2023. He is a fellow of the IEEE, APS, SPIE, MRS, and Optica.
Alexander V. Kildishev is renowned for his groundbreaking work in optical metamaterials and transformation optics that spans theoretical concepts, advanced numerical modeling, and experimental guidance. His research has enabled superlenses, hyperlenses, and optical black holes. His recent work focuses on advanced multiphysics modeling in nonlinear optics and AI-driven inverse design in photonics. Beyond other awards, was listed as a highly cited researcher by the Web of Science in 2018, 2022, and 2023.
References
[2] Counterfeit chips a problem as global shortage increases semiconductor fraud(2024).
[3] P. Karazuba. Combating counterfeit chips(2024).
[5] B. Wilson et al. Empowering quantum 2.0 devices and approaches with machine learning, QTu2A.13(2022).
[7] Y. Yao et al. Clockpuf: physical unclonable functions based on clock networks, 422-427(2013).
[12] P. Ebenezer. Counterfeit mitigation with PUF-embedded readout(2020).
[13] U. Rührmair, S. Devadas, F. Koushanfar. Introduction to Hardware Security and Trust(2012).
[14] R. Pappu et al. Physical one-way functions. Science, 297, 2026-2030(2002).
[15] B. Gassend et al. Silicon physical random functions, 148-160(2002).
[16] R. Maes. Physically Unclonable Functions, 49-80(2013).
[26] J. Guenette et al. MR imaging of the extracranial facial nerve with the CISS sequence. Am. J. Neuroradiol., 40, 1954-1959(2019).
[31] A. Vaswani et al. Attention is all you need(2017).
[41] M. Hamilton et al. Unsupervised semantic segmentation by distilling feature correspondences(2022).
[43] R. Pathria, P. D. Beale. Statistical Mechanics(2011).

Set citation alerts for the article
Please enter your email address