• Journal of Semiconductors
  • Vol. 43, Issue 11, 112501 (2022)
Xueqin Zhao1, Jinou Dong1, Licheng Fu1, Yilun Gu1, Rufei Zhang1, Qiaolin Yang1, Lingfeng Xie1, Yinsong Tang1, and Fanlong Ning1、2、3、*
Author Affiliations
  • 1Zhejiang Province Key Laboratory of Quantum Technology and Device and Department of Physics, Zhejiang University, Hangzhou 310027, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 3State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1088/1674-4926/43/11/112501 Cite this Article
    Xueqin Zhao, Jinou Dong, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Yinsong Tang, Fanlong Ning. (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping[J]. Journal of Semiconductors, 2022, 43(11): 112501 Copy Citation Text show less
    (Color online) (a) The polycrystal powder X-ray diffraction patterns of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175). Traces of impurities ZnSb are marked as stars (*). (b) The Rietveld refinement result of (Ba0.875Na0.125)F(Zn0.875Mn0.125)Sb. Inset shows the tetragonal ZrCuSiAs-type crystal structure of parent compound BaFZnSb. (c) Lattice parametersa andc versus doping levelx of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175). (d) The unit cell volume of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175).
    Fig. 1. (Color online) (a) The polycrystal powder X-ray diffraction patterns of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175). Traces of impurities ZnSb are marked as stars (*). (b) The Rietveld refinement result of (Ba0.875Na0.125)F(Zn0.875Mn0.125)Sb. Inset shows the tetragonal ZrCuSiAs-type crystal structure of parent compound BaFZnSb. (c) Lattice parametersa andc versus doping levelx of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175). (d) The unit cell volume of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175).
    (Color online) (a) The temperature dependence of DC magnetization for parent phase BaFZnSb and (Ba0.95Na0.05)FZnSb under field-cooling mode in an external magnetic field of 100 Oe. The data (open circles) are the data dots, and the solid lines are the Curie-Weiss fitting results. (b) The temperature dependent magnetization (M) for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) in both zero-field-cooling (ZFC) and field-cooling (FC) procedures under an external magnetic field of 100 Oe. Inset shows the enlarged M(T) curves for all specimens at low temperature. Arrow marksTirr forx = 0.10. (c) The plot of1/(χ−χ0) versusT for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) under FC condition. Arrows mark the Weiss temperatures. Inset shows the enlarged plot of1/(χ−χ0) versusT for all of specimens below 30 K. (d) Iso-thermal magnetization for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) at 2 K. Inset shows the enlargedM(H) curves for all of specimens under an external magnetic fieldBext from –20 000 to 20 000 Oe.
    Fig. 2. (Color online) (a) The temperature dependence of DC magnetization for parent phase BaFZnSb and (Ba0.95Na0.05)FZnSb under field-cooling mode in an external magnetic field of 100 Oe. The data (open circles) are the data dots, and the solid lines are the Curie-Weiss fitting results. (b) The temperature dependent magnetization (M) for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) in both zero-field-cooling (ZFC) and field-cooling (FC) procedures under an external magnetic field of 100 Oe. Inset shows the enlarged M(T) curves for all specimens at low temperature. Arrow marks Tirr forx = 0.10. (c) The plot of 1/(χχ0) versusT for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) under FC condition. Arrows mark the Weiss temperatures. Inset shows the enlarged plot of 1/(χχ0) versusT for all of specimens below 30 K. (d) Iso-thermal magnetization for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) at 2 K. Inset shows the enlargedM(H) curves for all of specimens under an external magnetic field Bext from –20 000 to 20 000 Oe.
    (Color online) The (a) real partχ' and (b) imaginary partχ'′ of AC susceptibility with varying frequenciesf under zero field for (Ba0.9Na0.1)F(Zn0.9Mn0.1)Sb. (c) A frequency dependence of spin freezing temperatureTf for (Ba0.9Na0.1)F(Zn0.9Mn0.1)Sb.
    Fig. 3. (Color online) The (a) real part χ' and (b) imaginary part χ' of AC susceptibility with varying frequenciesf under zero field for (Ba0.9Na0.1)F(Zn0.9Mn0.1)Sb. (c) A frequency dependence of spin freezing temperature Tf for (Ba0.9Na0.1)F(Zn0.9Mn0.1)Sb.
    (Color online) Temperature-dependent resistivity measurements for (Ba1−xNax)F(Zn1−yMny)Sb (x = 0.00,y = 0.00;x = 0.05,y = 0.00;x = 0.05,y = 0.05;x = 0.075,y = 0.075;x = 0.10,y = 0.10;x = 0.125,y = 0.125;x = 0.15,y = 0.15;x = 0.175,y = 0.175).
    Fig. 4. (Color online) Temperature-dependent resistivity measurements for (Ba1−xNax)F(Zn1−yMny)Sb (x = 0.00,y = 0.00;x = 0.05,y = 0.00;x = 0.05,y = 0.05;x = 0.075,y = 0.075;x = 0.10,y = 0.10;x = 0.125,y = 0.125;x = 0.15,y = 0.15;x = 0.175,y = 0.175).
    xθ (K)Mbase ( μB/Mn)μeff ( μB/Mn)HC (Oe)
    0.0540.003833.2312000
    0.07580.005883.2510500
    0.10130.011273.1810000
    0.125140.009692.779000
    0.15150.009272.528700
    0.175160.009412.804000
    Table 1. The Weiss temperatureθ, the base temperature magnetic moment Mbase, the effective magnetic moment μeff and the coercive field HC for (Ba1−xNax)F(Zn1−xMnx)Sb forx = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175.
    Xueqin Zhao, Jinou Dong, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Yinsong Tang, Fanlong Ning. (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping[J]. Journal of Semiconductors, 2022, 43(11): 112501
    Download Citation