• Acta Optica Sinica
  • Vol. 42, Issue 16, 1612002 (2022)
Liangliang Mo, Jieji Ren, and Mingjun Ren*
Author Affiliations
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/AOS202242.1612002 Cite this Article Set citation alerts
    Liangliang Mo, Jieji Ren, Mingjun Ren. Microlens Array-Based Spatial Angle Encoding for High-Precision Visual Pose Measurement[J]. Acta Optica Sinica, 2022, 42(16): 1612002 Copy Citation Text show less
    Principle of dynamic display by microlens array
    Fig. 1. Principle of dynamic display by microlens array
    Micrographics array and dynamic display effect. (a) Micrographics array; (b)(c) display patterns at different shooting angles (after perspective transformation)
    Fig. 2. Micrographics array and dynamic display effect. (a) Micrographics array; (b)(c) display patterns at different shooting angles (after perspective transformation)
    Weighted estimation of x-axis and y-axis rotation angles
    Fig. 3. Weighted estimation of x-axis and y-axis rotation angles
    Experimental scene. (a) Experimental setup; (b) camera; (c) rotator and microlens array fiducial marker; (d) display of microlens array fiducial marker
    Fig. 4. Experimental scene. (a) Experimental setup; (b) camera; (c) rotator and microlens array fiducial marker; (d) display of microlens array fiducial marker
    Schematic diagram of viewpoint variation range in angular vector space
    Fig. 5. Schematic diagram of viewpoint variation range in angular vector space
    Display patterns at different shooting angles (after perspective transformation). (a) ψ=0.5°,θ=1.5°; (b) ψ=0.5°,θ=2.0°; (c) ψ=0°,θ=1.5°; (d) ψ=1.0°,θ=1.5°
    Fig. 6. Display patterns at different shooting angles (after perspective transformation). (a) ψ=0.5°,θ=1.5°; (b) ψ=0.5°,θ=2.0°; (c) ψ=0°,θ=1.5°; (d) ψ=1.0°,θ=1.5°
    Pose measurement results. (a) x-axis rotation angle error; (b) y-axis rotation angle error; (c) z-axis rotation angle error; (d) estimation result of translation in x direction; (e) estimation result of translation in y direction; (f) estimation result of translation in z direction
    Fig. 7. Pose measurement results. (a) x-axis rotation angle error; (b) y-axis rotation angle error; (c) z-axis rotation angle error; (d) estimation result of translation in x direction; (e) estimation result of translation in y direction; (f) estimation result of translation in z direction
    Methodx axisy axis
    MLA+0.06590.0787
    MLA0.12270.1284
    P4P2.30610.6373
    Table 1. Comparison of average measurement error of rotation angle by different methods
    Methodx axisy axis
    OTSU0.06590.0787
    Maximum information entropy0.14090.3985
    Table 2. Comparison of average measurement error of rotation angle by OSTU method and maximum information entropy method
    MethodConditionx axisy axis
    OTSUUnweighted00
    Weighted00
    Maximum information entropyUnweighted221
    Weighted116
    Table 3. Comparison of failure number of rotation angle measurement by two gray threshold segmentation methods
    Threshold numberx axisy axis
    10.06590.0787
    20.05450.0856
    30.07330.0860
    40.07070.0838
    Table 4. Average measurement error of rotation angle under different threshold number
    Methodx axisy axis
    Dense encoding(ours)0.06590.0787
    Linear interpolation0.48800.4690
    Table 5. Comparison of average measurement error of rotation angle by dense encoding method and linear interpolation method
    Angle intervalx axisy axis
    0.13.583.10
    0.27.046.10
    0.310.519.08
    0.413.9211.98
    0.517.4314.83
    Table 6. Average Hamming distance at different angle intervals
    Liangliang Mo, Jieji Ren, Mingjun Ren. Microlens Array-Based Spatial Angle Encoding for High-Precision Visual Pose Measurement[J]. Acta Optica Sinica, 2022, 42(16): 1612002
    Download Citation