• Photonics Research
  • Vol. 8, Issue 4, 548 (2020)
Bin Wang1、2, Chen Zhao1、2, Huanyu Lu2、3, Tingting Zou1、2, Subhash C. Singh1、4、5、*, Zhi Yu1、6、*, Chaonan Yao1、2, Xin Zheng1、2, Jun Xing1、2, Yuting Zou1、2, Cunzhu Tong3, Weili Yu1, Bo Zhao1, and Chunlei Guo1、4、7、*
Author Affiliations
  • 1The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 4The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
  • 5e-mail: ssingh49@ur.rochester.edu
  • 6e-mail: zhiyu@ciomp.ac.cn
  • 7e-mail: guo@optics.rochester.edu
  • show less
    DOI: 10.1364/PRJ.383612 Cite this Article Set citation alerts
    Bin Wang, Chen Zhao, Huanyu Lu, Tingting Zou, Subhash C. Singh, Zhi Yu, Chaonan Yao, Xin Zheng, Jun Xing, Yuting Zou, Cunzhu Tong, Weili Yu, Bo Zhao, Chunlei Guo. SERS study on the synergistic effects of electric field enhancement and charge transfer in an Ag2S quantum dots/plasmonic bowtie nanoantenna composite system[J]. Photonics Research, 2020, 8(4): 548 Copy Citation Text show less
    References

    [1] H. Shindo. Raman spectra of acrylonitrile adsorbed on a silver electrode. Chem. Phys. Lett., 159, 85-89(1989).

    [2] A. B. Zrimsek, N. L. Wong, P. R. Van Duyne. Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof. J. Phys. Chem. C, 120, 5133-5142(2016).

    [3] X. M. Qian, S. M. Nie. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev., 37, 912-920(2008).

    [4] C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, L. H. Wang. Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows. J. Mater. Chem. B, 7, 2001-2008(2019).

    [5] D. Joseph, Y. S. Huh, Y. K. Han. A top-down chemical approach to tuning the morphology and plasmon resonance of spiky nanostars for enriched SERS-based chemical sensing. Sens. Actuators B, 288, 120-126(2019).

    [6] H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, B. D. Wang. Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers. ACS Sustain. Chem. Eng., 7, 5200-5208(2019).

    [7] R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, M. Z. Si. Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm. J. Raman Spectrosc., 44, 362-369(2013).

    [8] Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, D. Zhang. Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film. Nanophotonics, 8, 1533-1546(2019).

    [9] G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, Z. Q. Liu. Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures. Nanophotonics, 8, 1095-1107(2019).

    [10] S. H. Huang, X. F. Jiang, B. Peng, C. Janisch, A. Cocking, S. K. Özdemir, Z. W. Liu, L. Yang. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance. Photon. Res., 6, 346-356(2018).

    [11] J. R. Lombardi, R. L. Birke. A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C, 112, 5605-5617(2008).

    [12] Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, C. L. Guo. Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite. ACS Photon., 5, 1619-1627(2018).

    [13] L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, J. R. Lombardi. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci., 6, 1900310(2019).

    [14] L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, C. H. Hsueh. Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas. J. Phys. Chem. C, 117, 25004-25011(2013).

    [15] X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, J. R. Lombardi. A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering. J. Phys. Chem. Lett., 3, 2773-2778(2012).

    [16] Z. Zhu, B. Bai, O. You, Q. Li, S. Fan. Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application. Light Sci. Appl., 4, e296(2015).

    [17] M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, J. B. Edel. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater., 12, 165-171(2012).

    [18] Z. Y. Fang, X. Zhu. Plasmonics in nanostructures. Adv. Mater., 25, 3840-3856(2013).

    [19] J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, C. L. Guo. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light Sci. Appl., 8, 53(2019).

    [20] R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, D. L. C. M. Lamy. Near-field enhancement localization on plasmonic gratings. J. Phys. Chem. C, 120, 27562-27570(2016).

    [21] D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, H. Altug. Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl., 6, e17029(2017).

    [22] Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, Q. Lin. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light Sci. Appl., 7, 67(2018).

    [23] B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, K. G. Heinze. Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips. ACS Photon., 5, 2225-2233(2018).

    [24] K. J. Russell, T. L. Liu, S. Cui, E. L. Hu. Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics, 6, 459-462(2012).

    [25] H. Q. Zhao, H. T. Gao, T. Cao, B. Y. Li. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna. Opt. Express, 26, A178-A191(2018).

    [26] W. Wang, J. Zhang, X. Che, G. Qin. Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays. Sci. Rep., 6, 34219(2016).

    [27] C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Nano Lett., 15, 1382-1387(2015).

    [28] G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, J. G. Rivas. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl., 2, e66(2013).

    [29] B. Wang, S. C. Singh, H. Y. Lu, C. L. Guo. Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing. Plasmonics(2019).

    [30] Y. Chen, Y. H. Chen, J. R. Chu, X. F. Xu. Bridged bowtie aperture antenna for producing an electromagnetic hot spot. ACS Photon., 4, 567-575(2017).

    [31] D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, M. Cuscunà. Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas. ACS Photon., 5, 3399-3407(2018).

    [32] J. Zhang, M. Irannejad, B. Cui. Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS). Plasmonics, 10, 831-837(2014).

    [33] L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, H. D. Hallen. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna. Appl. Phys. Lett., 101, 113116(2012).

    [34] N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, B. H. Gu. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett., 10, 4952-4955(2010).

    [35] J. Cesario, R. Quidant, G. Badenes, S. Enoch. Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt. Lett., 30, 3404-3406(2005).

    [36] Y. Chu, D. Wang, W. Zhu, K. B. Crozier. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model. Opt. Express, 19, 14919-14928(2011).

    [37] L. H. Lin, Y. B. Zheng. Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci. Rep., 5, 14788(2015).

    [38] Y. Chu, M. G. Banaee, K. B. Crozier. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies. ACS Nano, 4, 2804-2810(2010).

    [39] Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, Y. Zhang. Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths. Sci. Rep., 7, 41966(2017).

    [40] Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, C. Z. Jiang. Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light Sci. Appl., 4, e342(2015).

    [41] Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, Y. Ozaki. Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid. Phys. Chem. Chem. Phys., 16, 3153-3161(2014).

    [42] J. R. Lombardi, R. L. Birke, T. Lu, J. Xu. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J. Chem. Phys., 84, 4174-4180(1986).

    [43] L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, B. Zhao. Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles. New J. Chem., 43, 230-237(2019).

    [44] J. Wu, P. Wang, F. Wang, Y. Fang. Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy. Nanomaterials, 8, 864(2018).

    [45] D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, X. Wang. A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system. J. Mater. Chem. C., 6, 12547-12554(2018).

    [46] X. Hou, X. Zhang, W. Yang, Y. Liu, X. Zhai. Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer. Mater. Res. Bull., 47, 2579-2583(2012).

    [47] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos. Shape control of CdSe nanocrystals. Nature, 404, 59-61(2000).

    [48] J. T. Hugall, J. J. Baumberg, S. Mahajan. Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces. Appl. Phys. Lett., 95, 141111(2009).

    [49] Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano, 6, 3695-3702(2012).

    [50] Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, M. Flores-Acosta. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull., 99, 385-392(2018).

    [51] A. Sahu, L. Qi, M. S. Kang, D. Deng, D. J. Norris. Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc., 133, 6509-6512(2011).

    [52] J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, J. Tang. Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots. Mater. Res. Bull., 106, 113-123(2018).

    [53] C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, Q. Wang. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano, 9, 12255-12263(2015).

    [54] C. Lu, G. Chen, B. Yu, H. Cong. Recent advances of low biological toxicity Ag2S QDs for biomedical application. Adv. Eng. Mater., 20, 1700940(2018).

    [55] X. Fu, T. Jiang, Q. Zhao, H. Yin. Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates. J. Raman Spectrosc., 43, 1191-1195(2012).

    [56] S. Pan, X. Liu, X. Wang. Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity. Mater. Charact., 62, 1094-1101(2011).

    [57] J. Wu, Y. Zhou, W. Nie, P. Chen. One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications. J. Nanopart. Res., 20, 7(2018).

    [58] A. Taflove, S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time Domain Method(2005).

    [59] E. D. Palik. Handbook of Optical Constants of Solids I(1991).

    [60] W. Ding, R. Bachelot, S. Kostcheev, P. Royer, R. E. de Lamaestre. Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles. J. Appl. Phys., 108, 124314(2010).

    [61] A. Dutta, K. Alam, T. Nuutinen, E. Hulkko, P. Karvinen, M. Kuittinen, J. J. Toppari, E. M. Vartiainen. Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers. Opt. Express, 27, 30031-30043(2019).

    [62] Z. Sun, C. Wang, J. Yang, B. Zhao, J. R. Lombardi. Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J. Phys. Chem. C, 112, 6093-6098(2008).

    [63] M. Pang, J. Hu, H. C. Zeng. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc., 132, 10771-10785(2010).

    [64] J. Yang, J. Y. Ying. Nanocomposites of Ag2S and noble metals. Angew. Chem. (Int. Ed.), 50, 4637-4643(2011).

    [65] M. Osawa, N. Matsuda, K. Yoshii, I. Uchida. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem., 98, 12702-12707(1994).

    [66] L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, Z. Cheng. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates. Nanoscale, 7, 5147-5151(2015).

    [67] L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, J. R. Lombardi. Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly. J. Phys. Chem. C, 113, 117-120(2009).

    [68] X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, B. Zhao. Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys. Chem. Chem. Phys., 19, 11212-11219(2017).

    [69] C. Chenal, R. L. Birke, J. R. Lombardi. Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy. Chem. Phys. Chem., 9, 1617-1623(2008).

    [70] W. Zhang, L. Zhang, Z. Hui, X. Zhang, Y. Qian. Synthesis of nanocrystalline Ag2S in aqueous solution. Solid State Ionics, 130, 111-114(2000).

    [71] J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, R. Xiao. A graphene-interlayered magnetic composite as a multifunctional SERS substrate. RSC Adv., 5, 62101-62109(2015).

    Bin Wang, Chen Zhao, Huanyu Lu, Tingting Zou, Subhash C. Singh, Zhi Yu, Chaonan Yao, Xin Zheng, Jun Xing, Yuting Zou, Cunzhu Tong, Weili Yu, Bo Zhao, Chunlei Guo. SERS study on the synergistic effects of electric field enhancement and charge transfer in an Ag2S quantum dots/plasmonic bowtie nanoantenna composite system[J]. Photonics Research, 2020, 8(4): 548
    Download Citation