• Acta Optica Sinica
  • Vol. 41, Issue 1, 0124001 (2021)
Haochi Zhang1、2, Peihang He1、2, Lingyun Niu1、2, Lepeng Zhang1、2, and Tiejun Cui1、2、*
Author Affiliations
  • 1Institute of Electromagnetic Space, Southeast University, Nanjing, Jiangsu 210096, China
  • 2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, Jiangsu 210096, China
  • show less
    DOI: 10.3788/AOS202141.0124001 Cite this Article Set citation alerts
    Haochi Zhang, Peihang He, Lingyun Niu, Lepeng Zhang, Tiejun Cui. Spoof Plasmonic Metamaterials[J]. Acta Optica Sinica, 2021, 41(1): 0124001 Copy Citation Text show less
    References

    [1] Paul C R. Introduction to electromagnetic compatibility[M]. New York: Wiley(2007).

    [2] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [3] Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 7, 442-453(2008).

    [4] Jones A C, Olmon R L, Skrabalak S E et al. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires[J]. Nano Letters, 9, 2553-2558(2009). http://europepmc.org/abstract/med/19499897

    [5] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics[J]. Nature Materials, 11, 174-177(2012). http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220120500131513

    [6] Hibbins A P, Hendry E, Lockyear M J et al. Prism coupling to ‘designer’ surface plasmons[J]. Optics Express, 16, 20441-20447(2008).

    [7] Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer(2007).

    [8] Pendry J B. Mimicking surface plasmons with structured surfaces[J]. Science, 305, 847-848(2004). http://newmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15247438

    [9] Garcia-Vidal F J, Martín-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 7, S97-S101(2005). http://adsabs.harvard.edu/abs/2005JOptA...7S..97G

    [10] Shen X, Cui T J, Martin-Cano D et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. PNAS, 110, 40-45(2013).

    [11] Zhou Y J, Jiang Q, Cui T J. Bidirectional bending splitter of designer surface plasmons[J]. Applied Physics Letters, 99, 111904(2011). http://scitation.aip.org/content/aip/journal/apl/99/11/10.1063/1.3639277

    [12] Zhang H C, He P H, Liu Z X et al. Dispersion analysis of deep-subwavelength-decorated metallic surface using field-network joint solution[J]. IEEE Transactions on Antennas and Propagation, 66, 2923-2933(2018). http://ieeexplore.ieee.org/document/8332970

    [13] Zhang H C, He P H, Gao X X et al. Loss analysis of plasmonic metasurfaces using field-network-joint method[J]. IEEE Transactions on Antennas and Propagation, 67, 3521-3526(2019). http://ieeexplore.ieee.org/document/8649724

    [14] Hibbins A P. Experimental verification of designer surface plasmons[J]. Science, 308, 670-672(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000011000018000095000001&idtype=cvips&gifs=Yes

    [15] Juluri B K. Lin S C S, Walker T R, et al. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index[J]. Optics Express, 17, 2997-3006(2009).

    [16] Zhang H C, Cui T J, Zhang Q et al. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons[J]. ACS Photonics, 2, 1333-1340(2015). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00316

    [17] Zhang H C, Zhang Q, Liu J F et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports, 6, 23396(2016). http://www.nature.com/articles/srep23396

    [18] Tang W X, Zhang H C, Liu J F et al. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line[J]. Scientific Reports, 7, 41077(2017). http://www.ncbi.nlm.nih.gov/pubmed/28112238

    [19] Zhang H C, Tang W X, Xu J et al. Reduction of shielding-box volume using SPP-like transmission lines[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7, 1486-1492(2017). http://ieeexplore.ieee.org/document/7932956/

    [20] Gao X X, Zhang H C, He P H et al. Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9, 2267-2275(2019). http://ieeexplore.ieee.org/document/8777143/citations

    [21] He P H, Zhang H C, Tang W X et al. Shielding spoof surface plasmon polariton transmission lines using dielectric box[J]. IEEE Microwave and Wireless Components Letters, 28, 1077-1079(2018).

    [22] Tang X L, Zhang Q F, Hu S M et al. Capacitor-loaded spoof surface plasmon for flexible dispersion control and high-selectivity filtering[J]. IEEE Microwave and Wireless Components Letters, 27, 806-808(2017). http://ieeexplore.ieee.org/document/8013094/

    [23] Chen C C. A new kind of spoof surface plasmon polaritons structure with periodic loading of T-shape grooves[J]. AIP Advances, 6, 105003(2016). http://scitation.aip.org/content/aip/journal/adva/6/10/10.1063/1.4964619

    [24] Liu X Y, Zhu L, Wu Q S et al. Highly-confined and low-loss spoof surface plasmon polaritons structure with periodic loading of trapezoidal grooves[J]. AIP Advances, 5, 077123(2015). http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4926770

    [25] He P H, Zhang H C, Gao X X et al. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements[J]. Opto-Electronic Advances, 2, 190001(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190908000004GdJgMi

    [26] Wan X, Cui T J. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip[J]. AIP Advances, 4, 047137(2014). http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4874307

    [27] Kianinejad A, Chen Z N, Qiu C W. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 1817-1825(2015).

    [28] Zhang H C, Cui T J, Xu J et al. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial[J]. Advanced Materials and Technologies, 2, 1600202(2017). http://onlinelibrary.wiley.com/doi/10.1002/admt.201600202/abstract

    [29] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 432, 376-379(2004).

    [30] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [31] Wu C J, Cheng Y Z, Wang W Y et al. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling[J]. Applied Physics Express, 8, 122001(2015).

    [32] Sun W J, He Q, Sun S L et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science & Applications, 5, e16003(2016).

    [33] Ma H F, Shen X P, Cheng Q et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser & Photonics Reviews, 8, 146-151(2014). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201300118/abstract

    [34] Liao Z, Zhao J, Pan B C et al. Broadband transition between microstrip line and conformal surface plasmon waveguide[J]. Journal of Physics D, 47, 315103(2014). http://adsabs.harvard.edu/abs/2014JPhD...47E5103L

    [35] Kianinejad A, Chen Z N, Qiu C W. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation[J]. IEEE Transactions on Microwave Theory and Techniques, 64, 3078-3086(2016).

    [36] Zhang W J, Zhu G Q, Sun L G et al. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation[J]. Applied Physics Letters, 106, 021104(2015). http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4905675

    [37] Zhang H C, Liu S, Shen X P et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J]. Laser & Photonics Reviews, 9, 83-90(2015).

    [38] He P H, Zhang H C, Tang W X et al. A multi-layer spoof surface plasmon polariton waveguide with corrugated ground[J]. IEEE Access, 5, 25306-25311(2017). http://ieeexplore.ieee.org/document/8090521/

    [39] Yan R T, Zhang H C, He P H et al. A broadband and high-efficiency compact transition from microstrip line to spoof surface plasmon polaritons[J]. IEEE Microwave and Wireless Components Letters, 30, 23-26(2020). http://ieeexplore.ieee.org/document/8938719/

    [40] Gao X, Zhou L, Yu X Y et al. Ultra-wideband surface plasmonic Y-splitter[J]. Optics Express, 23, 23270-23277(2015).

    [41] Wu Y L, Li M X, Yan G Y et al. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells[J]. AIP Advances, 6, 105110(2016). http://scitation.aip.org/content/aip/journal/adva/6/10/10.1063/1.4966051

    [42] Liu X Y, Feng Y J, Chen K et al. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures[J]. Optics Express, 22, 20107-20116(2014).

    [43] Gao X, Shi J H, Shen X P et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies[J]. Applied Physics Letters, 102, 151912(2013).

    [44] Shen X P, Cui T J. Planar plasmonic metamaterial on a thin film with nearly zero thickness[J]. Applied Physics Letters, 102, 211909(2013). http://scitation.aip.org/content/aip/journal/apl/102/21/10.1063/1.4808350

    [45] Yin J Y, Ren J, Zhang H C et al. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure[J]. Scientific Reports, 5, 8165(2015).

    [46] Zhang Q, Zhang H C, Wu H et al. A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters[J]. Scientific Reports, 5, 16531(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4639719/

    [47] Guan D F, You P, Zhang Q F et al. Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter[J]. IEEE Transactions on Microwave Theory and Techniques, 65, 4925-4932(2017). http://ieeexplore.ieee.org/document/7990271

    [48] Xu B Z, Li Z, Liu L L et al. Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons[J]. Journal of the Optical Society of America B, 33, 1388-1391(2016).

    [49] Liu X Y, Zhu L, Feng Y J. Spoof surface plasmon-based bandpass filter with extremely wide upper stopband[J]. Chinese Physics B, 25, 034101(2016).

    [50] Zhao L, Zhang X, Wang J et al. A novel broadband band-pass filter based on spoof surface plasmon polaritons[J]. Scientific Reports, 6, 36069(2016). http://www.ncbi.nlm.nih.gov/pubmed/27796313

    [51] Xu J J, Zhang H C, Zhang Q et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes[J]. Applied Physics Letters, 106, 021102(2015). http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4905580

    [52] Xu J J, Yin J Y, Zhang H C et al. Compact feeding network for array radiations of spoof surface plasmon polaritons[J]. Scientific Reports, 6, 22692(2016).

    [53] Zhang H C, Liu L, He P H et al. A wide-angle broadband converter: from odd-mode spoof surface plasmon polaritons to spatial waves[J]. IEEE Transactions on Antennas and Propagation, 67, 7425-7432(2019). http://www.researchgate.net/publication/335353363_A_Wide-Angle_Broadband_Converter_From_Odd-Mode_Spoof_Surface_Plasmon_Polaritons_to_Spatial_Waves

    [54] Lu J Y, Zhang H C, He P H et al. Design of miniaturized antenna using corrugated microstrip[J]. IEEE Transactions on Antennas and Propagation, 68, 1918-1924(2020). http://ieeexplore.ieee.org/document/8951448/

    [55] Pors A, Moreno E, Martin-Moreno L et al. Localized spoof plasmons arise while texturing closed surfaces[J]. Physical Review Letters, 108, 223905(2012). http://europepmc.org/abstract/med/23003598

    [56] Shen X P, Cui T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons[J]. Laser & Photonics Reviews, 8, 137-145(2014).

    [57] Liao Z, Luo Y. Fernández-Domínguez A I, et al. High-order localized spoof surface plasmon resonances and experimental verifications[J]. Scientific Reports, 5, 9590(2015).

    [58] McFarland A D, van Duyne R P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J]. Nano Letters, 3, 1057-1062(2003). http://pubs.acs.org/doi/pdf/10.1021/nl034372s

    [59] Huidobro P A, Shen X P, Cuerda J et al. Magnetic localized surface plasmons[J]. Physical Review X, 4, 021003(2014).

    [60] Liao Z, Shen X P, Pan B C et al. Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions[J]. ACS Photonics, 2, 738-743(2015). http://pubs.acs.org/doi/10.1021/acsphotonics.5b00096

    [61] Liao Z. Fernández-Domínguez A I, Zhang J J, et al. Homogenous metamaterial description of localized spoof plasmons in spiral geometries[J]. ACS Photonics, 3, 1768-1775(2016).

    [62] Zhang J J, Liao Z, Luo Y et al. Spoof plasmon hybridization[J]. Laser & Photonics Reviews, 11, 1600191(2017).

    [63] Zhang H C, Fan Y F, Guo J et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 3, 139-146(2016). http://pubs.acs.org/doi/10.1021/acsphotonics.5b00580

    [64] Gao X X, Zhang J J, Zhang H C et al. Dynamic controls of second-harmonic generations in both forward and backward modes using reconfigurable plasmonic metawaveguide[J]. Advanced Optical Materials, 8, 1902058(2020). http://onlinelibrary.wiley.com/doi/10.1002/adom.201902058

    [65] Zhang H C, He P H, Gao X X et al. Pass-band reconfigurable spoof surface plasmon polaritons[J]. Journal of Physics: Condensed Matter, 30, 134004(2018). http://www.ncbi.nlm.nih.gov/pubmed/29380741

    [66] Gao X X, Zhang H C, Wu L W et al. Programmable multifunctional device based on spoof surface plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation, 68, 3770-3779(2020). http://ieeexplore.ieee.org/document/8979266

    [67] Zhou Y J, Zhang C, Yang L et al. Electronically switchable and tunable bandpass filters based on spoof localized surface plasmons[J]. Journal of the Optical Society of America B, 34, D9(2017).

    [68] Zhang H C, Zhang L P, He P H et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals[J]. Light: Science & Applications, 9, 113(2020). http://www.nature.com/articles/s41377-020-00355-y

    [69] Zhang H C, Cui T J, Luo Y et al. Active digital spoof plasmonics[J]. National Science Review, 7, 261-269(2020).

    Haochi Zhang, Peihang He, Lingyun Niu, Lepeng Zhang, Tiejun Cui. Spoof Plasmonic Metamaterials[J]. Acta Optica Sinica, 2021, 41(1): 0124001
    Download Citation