• Photonics Research
  • Vol. 6, Issue 6, 647 (2018)
Jing Wang1、2, Yuhao Guo1、2, Henan Liu1、2, Lionel C. Kimerling3, Jurgen Michel3, Anuradha M. Agarwal3, Guifang Li1、2、4, and Lin Zhang1、2、*
Author Affiliations
  • 1Key Laboratory of Opto-Electronic Information Technology of Ministry of Education, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Integrated Opto-Electronic Technologies and Devices in Tianjin, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 3Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 4College of Optics and Photonics, CREOL and FPCE, University of Central Florida, Orlando, Florida 32816, USA
  • show less
    DOI: 10.1364/PRJ.6.000647 Cite this Article Set citation alerts
    Jing Wang, Yuhao Guo, Henan Liu, Lionel C. Kimerling, Jurgen Michel, Anuradha M. Agarwal, Guifang Li, Lin Zhang. Robust cavity soliton formation with hybrid dispersion[J]. Photonics Research, 2018, 6(6): 647 Copy Citation Text show less
    References

    [1] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [2] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 4, 37-40(2010).

    [3] Y. K. Chembo, N. Yu. On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators. Opt. Lett., 35, 2696-2698(2010).

    [4] T. Herr, V. Brash, J. D. Jost, C. Y. Yang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [5] S.-W. Huang, H. Zhou, J. Yang, J. F. McMillan, M. Yu, D. L. Kwong, L. Maleki, C. W. Wong. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

    [6] L. Zhang, C. Bao, V. Singh, J. Mu, C. Yang, A. M. Agarwal, L. C. Kimerling, J. Michel. Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt. Lett., 38, 5122-5125(2013).

    [7] I. S. Grudinin, V. Huet, N. Yu, A. B. Matsko, M. L. Gorodetsky, L. Maleki. High-contrast Kerr frequency combs. Optica, 4, 434-437(2017).

    [8] A. E. Dorche, S. Abdollahramezani, H. Taheri, A. A. Eftekhar, A. Adibi. Extending chip-based Kerr-comb to visible spectrum by dispersive wave engineering. Opt. Express, 25, 22362-22374(2017).

    [9] C. Godey, I. V. Balakireva, A. Coillet, Y. K. Chembo. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 722-729(2014).

    [10] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. W. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [11] J. Wang, Y. Guo, H. Liu, G. Li, L. Zhang. A comparative analysis on fully integrated spectral broadening of Kerr frequency combs. IEEE Photon. J., 9, 4502509(2017).

    [12] G. P. Agrawal. Nonlinear Fiber Optics(2013).

    [13] P. Parrarivas, D. Gomilam, F. Leo, S. Coen, L. Gelens. Third-order chromatic dispersion stabilizes Kerr frequency combs. Opt. Lett., 39, 2971-2974(2014).

    [14] C. Millian, D. V. Skryabin. Soliton families and resonant radiation in a micror-ring resonator near zero group-velocity dispersion. Opt. Express, 22, 3732-3749(2014).

    [15] H. Taheri, A. B. Matsko, L. Maleki. Optical lattice trap for Kerr solitons. Eur. Phys. J. D, 71, 153(2017).

    [16] D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, S. B. Papp. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671-676(2017).

    [17] C. Bao, H. Taheri, L. Zhang, A. Matsko, Y. Yan, P. Liao, L. Maleki, A. E. Willner. High-order dispersion in Kerr comb oscillators. J. Opt. Soc. Am. B, 34, 715-725(2017).

    [18] H. Taheri. Ultrashort pulses in optical microresonators with Kerr nonlinearity(2017).

    [19] J. Wang, Z. Han, Y. Guo, L. C. Kimerling, J. Michel, A. M. Agrarwal, G. Li, L. Zhang. Robust generation of frequency combs in a microresonator with strong and narrowband loss. Photon. Res., 5, 552-556(2017).

    [20] L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express, 20, 1685-1690(2012).

    [21] Y. Guo, Z. Jarari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, L. Zhang. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt. Lett., 41, 4939-4942(2016).

    [22] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, T. J. Kippenberg. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 107, 063901(2011).

    [23] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

    [24] S. Coen, M. Erkintalo. Universal scaling laws of Kerr frequency combs. Opt. Lett., 38, 1790-1792(2013).

    [25] L. Zhang, Q. Lin, L. C. Kimerling, J. Michel. Self-frequency shift of cavity soliton in Kerr frequency comb(2014).

    CLP Journals

    [1] Xiaobao Zhang, Guoping Lin, Tang Sun, Qinghai Song, Guangzong Xiao, Hui Luo. Dispersion engineering and measurement in crystalline microresonators using a fiber ring etalon[J]. Photonics Research, 2021, 9(11): 2222

    Jing Wang, Yuhao Guo, Henan Liu, Lionel C. Kimerling, Jurgen Michel, Anuradha M. Agarwal, Guifang Li, Lin Zhang. Robust cavity soliton formation with hybrid dispersion[J]. Photonics Research, 2018, 6(6): 647
    Download Citation