• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 1, 143 (2024)
XIANG Shengjian1、* and CHEN Yunsong2
Author Affiliations
  • 1School of Mathematical Science, Sichuan Normal University, Chengdu 610066, China
  • 2Sichuan Xinchuang Center, Chengdu 610000, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.01.014 Cite this Article
    Shengjian XIANG, Yunsong CHEN. Quantum teleportation with weak and recover measurement in memory amplitude damping noise channel[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 143 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G, C´repeau C et al. Teleporting an unknown quantum statevia dual classical and Einstein-Podolsky- Rosen channels[J]. Physical Review Letters, 70, 1895-1899(1993).

    [2] Man Z X, Xia Y J, An N B. Genuine multiqubit entanglement and controlled teleportation[J]. Physical Review A, 75, 052306(2007).

    [3] Zhang Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message[J]. Physics Letters A, 352, 55-58(2006).

    [4] Liu Z Y, Bai M Q, Xiao J Y et al. An asymmetric controlled bidirectional teleportation scheme and optimization[J]. Chinese Journal of Quantum Electronics, 38, 31-36(2021).

    [5] Chen X B, Du J Z, Wen Q Y et al. Probabilistic teleportation of multi-particle partially entangled state[J]. Chinese Physics B, 17, 771-777(2008).

    [6] Yan F L, Yan T. Probabilistic teleportation via a non-maximally entangled GHZ state[J]. Chinese Science Bulletin, 55, 902-906(2010).

    [7] Hassanpour S, Houshmand M. Bidirectional teleportation of a pure EPR state by using GHZ states[J]. Quantum Information Processing, 15, 905-912(2016).

    [8] Peng J Y, Bai M Q, Mo Z W. Bidirectional quantum states sharing[J]. International Journal of Theoretical Physics, 55, 2481-2489(2016).

    [9] Yang G, Lian B W, Nie M et al. Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement[J]. Chinese Physics B, 26, 040305(2017).

    [10] Zha X W, Zou Z C, Qi J X et al. Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. International Journal of Theoretical Physics, 52, 1740-1744(2013).

    [11] Chen Y X, Du J, Liu S Y et al. Cyclic quantum teleportation[J]. Quantum Information Processing, 16, 201(2017).

    [12] Peng J Y, Bai M Q, Mo Z W. Deterministic multi-hop controlled teleportation of arbitrary single-qubit state[J]. International Journal of Theoretical Physics, 56, 3348-3358(2017).

    [13] Zhan H T, Yu X T, Xiong P Y et al. Multi-hop teleportation based on W state and EPR pairs[J]. Chinese Physics B, 25, 050305(2016).

    [14] Xu K, Cao H, Zhang C et al. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 39, 3-31(2022).

    [15] Peng J Y. Tripartite controlled joint remote state preparation based on ten-particle entangled state[J]. Chinese Journal of Quantum Electronics, 38, 66-74(2021).

    [16] Oh S, Lee S, Lee H W. Fidelity of quantum teleportation through noisy channels[J]. Physical Review A, 66, 022316(2002).

    [17] Dong L, Wang J X, Shen H Z et al. Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel[J]. Quantum Information Processing, 13, 1413-1424(2014).

    [18] Terhal B M. Quantum error correction for quantum memories[J]. Reviews of Modern Physics, 87, 307-346(2015).

    [19] Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 52, R2493-R2496(1995).

    [20] Dong L, Wang J X, Li Q Y et al. Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem[J]. Optics Letters, 41, 1030(2016).

    [21] Xu G F, Zhang J, Tong D M et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces[J]. Physical Review Letters, 109, 170501(2012).

    [22] Xiu X M, Li Q Y, Lin Y F et al. Preparation of four-photon polarization-entangled decoherence-free states employing weak cross-Kerr nonlinearities[J]. Physical Review A, 94, 042321(2016).

    [23] Li C K, Nakahara M, Poon Y T et al. Recursive encoding and decoding of the noiseless subsystem and decoherence-free subspace[J]. Physical Review A, 84, 044301(2011).

    [24] Pan J W, Simon C, Brukner Č et al. Entanglement purification for quantum communication[J]. Nature, 410, 1067-1070(2001).

    [25] Ren B C, Du F F, Deng F G. Two-step hyperentanglement purification with the quantum-state-joining method[J]. Physical Review A, 90, 052309(2014).

    [26] Lee J C, Jeong Y C, Kim Y S et al. Experimental demonstration of decoherence suppression via quantum measurement reversal[J]. Optics Express, 19, 16309(2011).

    [27] Kim Y S, Lee J C, Kwon O et al. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal[J]. Nature Physics, 8, 117-120(2012).

    [28] Kim Y S, Cho Y W, Ra Y S et al. Reversing the weak quantum measurement for a photonic qubit[J]. Optics Express, 17, 11978(2009).

    [29] Korotkov A N, Jordan A N. Undoing a weak quantum measurement of a solid-state qubit[J]. Physical Review Letters, 97, 166805(2006).

    [30] Katz N, Neeley M, Ansmann M et al. Reversal of the weak measurement of a quantum state in a superconducting phase qubit[J]. Physical Review Letters, 101, 200401(2008).

    [31] Qiu L, Tang G, Yang X et al. Enhancing teleportation fidelity by means of weak measurements or reversal[J]. Annals of Physics, 350, 137-145(2014).

    [32] Peng J Y, Tang L, Yang Z et al. Cyclic teleportation in noisy channel with nondemolition parity analysis and weak measurement[J]. Quantum Information Processing, 21, 114(2022).

    [33] Jiang S X, Zhao B, Liang X Z. Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory[J]. Chinese Physics B, 30, 060303(2021).

    [34] Zhang Z H, Sun M. Enhanced deterministic joint remote state preparation under Pauli channels with memory[J]. Physica Scripta, 95, 055107(2020).

    [35] Wang M J, Xia Y J, Yang Y et al. Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal[J]. Chinese Physics B, 29, 110307(2020).

    [36] Wu T X, Li Y X, Meng W et al. Enhancement of quantum teleportation fidelity based on partial memory channel[J]. Laser & Optoelectronics Progress, 58, 0527001(2021).

    [37] Macchiavello C, Palma G M. Entanglement-enhanced information transmission over a quantum channel with correlated noise[J]. Physical Review A, 65, 050301(2002).

    [38] Karpov E, Daems D, Cerf N J. Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions[J]. Physical Review A, 74, 032320(2006).

    [39] Preskill J[M]. Quantum Information and Computation:Chapter 3. Foundations II: Measurement and Evolution(2018).

    [40] Jozsa R. Fidelity for mixed quantum states[J]. Journal of Modern Optics, 41, 2315-2323(1994).

    [41] Uhlmamn A. The "transition probability" in the state space of a-algebra[J]. Reports on Mathematical Physics, 9, 273-279(1976).

    Shengjian XIANG, Yunsong CHEN. Quantum teleportation with weak and recover measurement in memory amplitude damping noise channel[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 143
    Download Citation