• Photonics Research
  • Vol. 7, Issue 7, 734 (2019)
Lei Lei1、4、*, Fei Lou2、5、*, Keyu Tao1, Haixuan Huang3, Xin Cheng2, and Ping Xu1
Author Affiliations
  • 1College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
  • 2School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
  • 3College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
  • 4e-mail: leilei@szu.edu.cn
  • 5e-mail: louf@sustc.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000734 Cite this Article Set citation alerts
    Lei Lei, Fei Lou, Keyu Tao, Haixuan Huang, Xin Cheng, Ping Xu. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition[J]. Photonics Research, 2019, 7(7): 734 Copy Citation Text show less
    References

    [1] C. F. Guo, T. Sun, F. Cao, Q. Liu, Z. Ren. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci. Appl., 3, e161(2014).

    [2] V. Rawat, S. N. Kale. Metamaterials for energy-harvesting applications: a review. Nanotech Insights, 6, 1-8(2015).

    [3] D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, X. Chen. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [4] Z. Yong, S. Zhang, C. Gong, S. He. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep., 6, 24063(2016).

    [5] Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep., 5, 8434(2015).

    [6] Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. Briggs, J. Valentine. Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [7] Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z. Fan, M. Saed, A. A. Bernussi. Tunable dual-band terahertz metamaterial bandpass filters. Opt. Lett., 38, 2382-2384(2013).

    [8] Z. Han, K. Kohno, H. Fujita, K. Hirakawa, H. Toshiyoshi. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Opt. Express, 22, 21326-21339(2014).

    [9] D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep., 5, 15899(2015).

    [10] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. M. Abramski. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett., 107, 051108(2015).

    [11] E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, R. W. Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [12] R. Feng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, D. H. Werner. Orbital angular momentum generation method based on transformation electromagnetics. Opt. Express, 26, 11708-11717(2018).

    [13] B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, L. Chen. A novel ultrathin and broadband microwave metamaterial absorber. J. Appl. Phys., 116, 094504(2014).

    [14] B. X. Wang, X. Zhaia, G. Zhen Wang, W. Q. Huang, L. L. Wang. A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys., 117, 014504(2015).

    [15] L. Lei, S. Li, H. Huang, K. Tao, P. Xu. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express, 26, 5686-5693(2018).

    [16] K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, A. K. Okyay. All-silicon ultra-broadband infrared light absorbers. Sci. Rep., 6, 38589(2016).

    [17] H. M. K. Wong, A. S. Helmy. Performance enhancement of nanoscale VO2 modulators using hybrid plasmonics. J. Lightwave Technol., 36, 797-808(2018).

    [18] Y. Zhang, Y. Feng, B. Zhu, J. Zhao, T. Jiang. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express, 22, 22743-22752(2014).

    [19] A. Xomalis, I. Demirtzioglou, Y. Jung, E. Plum, C. Lacava, P. Petropoulos, D. J. Richardson, N. I. Zheludev. Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber. Appl. Phys. Lett., 113, 051103(2018).

    [20] J. K. Pradhan, S. A. Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, A. Ghosh. High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane. Opt. Express, 25, 9116-9121(2017).

    [21] J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, X. Liu. VO2 thermochromic smart window for energy savings and generation. Sci. Rep., 3, 3029(2013).

    [22] G. Smith, A. Gentle, M. Arnold, M. Cortie. Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics, 5, 55-73(2016).

    [23] K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, O. L. Muskens. VO2 thermochromic metamaterial-based smart optical solar reflector. ACS Photon., 5, 2280-2286(2018).

    [24] M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, H. A. Atwater. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express, 17, 18330-18339(2009).

    [25] L. D. Sánchez, I. Olivares, J. Parra, M. Menghini, P. Homm, J. P. Locquet, P. Sanchis. Experimental demonstration of a tunable transverse electric pass polarizer based on hybrid VO2/silicon technology. Opt. Lett., 43, 3650-3653(2018).

    [26] L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, Z. Y. Wu. Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation. Nano Lett., 14, 4036-4043(2014).

    [27] H. Liu, J. Lu, X. R. Wang. Metamaterials based on the phase transition of VO2. Nanotechnology, 29, 024002(2018).

    [28] D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, M. Hong. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci. Rep., 5, 15020(2015).

    [29] Z. Song, K. Wang, J. Li, Q. H. Liu. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt. Express, 26, 7148-7154(2018).

    [30] M. Wakaki, K. Kudo, T. Shibuya. Physical Properties and Data of Optical Materials(2007).

    [31] S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. Van Dover, V. Liberman, M. A. Noginov. Tunable VO2/Au hyperbolic metamaterial. Appl. Phys. Lett., 109, 061105(2016).

    [32] Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, H. Xiao. A tunable metamaterial absorber based on VO2/W multilayer structure. IEEE Photon. Technol. Lett., 29, 1967-1970(2017).

    [33] Z. M. Liu, Y. Li, J. Zhang, Y. Q. Huang, Z. P. Li, J. H. Pei, B. Y. Fang, X. H. Wang, H. Xiao. Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films. J. Phys. D, 50, 385104(2017).

    [34] S. Shen, W. Qiao, Y. Ye, Y. Zhou, L. Chen. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers. Opt. Express, 23, 963-970(2015).

    [35] Y. J. Jen, Y. J. Huang, W. C. Liu, Y. W. Lin. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber. Sci. Rep., 7, 39791(2017).

    [36] P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, M. Eich. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun., 7, 11809(2016).

    [37] Y. K. Zhong, S. M. Fu, N. P. Ju, N. P. Ju, M. H. Tu, B. R. Chen, A. Lin. Fully planarized perfect metamaterial absorbers with no photonic nanostructures. IEEE Photon. J., 8, 2200109(2016).

    [38] M. Currie, M. A. Mastro, V. D. Wheeler. Characterizing the tunable refractive index of vanadium dioxide. Opt. Mater. Express, 7, 1697-1707(2017).

    [39] F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, S. I. Bozhevolnyi. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep., 6, 39445(2016).

    [40] A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, H. T. Chen. Metasurface broadband solar absorber. Sci. Rep., 6, 20347(2016).

    [41] D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, H. Ye. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett., 42, 450-453(2017).

    CLP Journals

    [1] Zhengji Wen, Jialiang Lu, Weiwei Yu, Hao Wu, Hao Xie, Xiaohang Pan, Qianqian Xu, Ziji Zhou, Chong Tan, Dongjie Zhou, Chang Liu, Yan Sun, Ning Dai, Jiaming Hao. Dynamically reconfigurable subwavelength optical device for hydrogen sulfide gas sensing[J]. Photonics Research, 2021, 9(10): 2060

    [2] Yan Chen, Kejian Chen, Dajun Zhang, Shihao Li, Yeli Xu, Xiong Wang, Songlin Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels[J]. Photonics Research, 2021, 9(7): 1391

    [3] Rong Tian, Yi Li, Zhimin Liu, Jianzhong Zhou, Jin Liu, Lina Fan, Wenqing Zhao, Junxian Li, Xin Zhang, Chuang Peng, Yuda Wu, Xiaohua Wang, Baoying Fang. Broadband NIR absorber based on square lattice arrangement in metallic and dielectric state VO2[J]. Chinese Optics Letters, 2020, 18(5): 052601

    Lei Lei, Fei Lou, Keyu Tao, Haixuan Huang, Xin Cheng, Ping Xu. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition[J]. Photonics Research, 2019, 7(7): 734
    Download Citation