• Journal of Semiconductors
  • Vol. 43, Issue 12, 121201 (2022)
Yutong Zhang1、2, Zhuoya Zhu1、2, Shuai Zhang1、2, Xianxin Wu1、2, Wenna Du1、2、*, and Xinfeng Liu1、2、**
Author Affiliations
  • 1CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/43/12/121201 Cite this Article
    Yutong Zhang, Zhuoya Zhu, Shuai Zhang, Xianxin Wu, Wenna Du, Xinfeng Liu. Spectroscopy and carrier dynamics of one-dimensional nanostructures[J]. Journal of Semiconductors, 2022, 43(12): 121201 Copy Citation Text show less
    References

    [1] de Arquer F P García, D V Talapin, V I Klimov et al. Semiconductor quantum dots: Technological progress and future challenges. Science, 373, eaaz8541(2021).

    [2] M C Weidman, M E Beck, R S Hoffman et al. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano, 8, 6363(2014).

    [3] Y S Park, J Roh, B Diroll et al. Colloidal quantum dot lasers. Nat Rev Mater, 6, 382(2021).

    [4] I Gur, N A Fromer, M L Geier et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310, 462(2005).

    [5] C L Tan, X H Cao, X J Wu et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 117, 6225(2017).

    [6] L H Li, Y Chen. Atomically thin boron nitride: Unique properties and applications. Adv Funct Mater, 26, 2594(2016).

    [7] Q H Weng, X B Wang, X Wang et al. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem Soc Rev, 45, 3989(2016).

    [8] X Huang, Z Y Zeng, H Zhang. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem Soc Rev, 42, 1934(2013).

    [9] P Zhang, Y W Zhang, Y Wei et al. Contact engineering for two-dimensional semiconductors. J Semicond, 41, 071901(2020).

    [10] N J Huo, Y J Yang, J B Li. Optoelectronics based on 2D TMDs and heterostructures. J Semicond, 38, 031002(2017).

    [11] A A Balandin, S Ghosh, W Z Bao et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902(2008).

    [12] K Wang, Q Ma, C X Qu et al. Review on 3D fabrication at nanoscale. Autex Res J(2022).

    [13] H Zhao, Y Lei. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv Energy Mater, 10, 2001460(2020).

    [14] H Tan, Z H Liu, D L Chao et al. Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv Energy Mater, 8, 1800685(2018).

    [15] S Zhang, Q Y Shang, W N Du et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv Opt Mater, 6, 1701032(2018).

    [16] Q Y Shang, S Zhang, Z Liu et al. Surface plasmon enhanced strong exciton-photon coupling in hybrid inorganic-organic perovskite nanowires. Nano Lett, 18, 3335(2018).

    [17] S Boubanga-Tombet, J B Wright, P Lu et al. Ultrafast carrier capture and auger recombination in single GaN/InGaN multiple quantum well nanowires. ACS Photonics, 3, 2237(2016).

    [18] I A Shojaei, S Linser, G Jnawali et al. Strong hot carrier effects in single nanowire heterostructures. Nano Lett, 19, 5062(2019).

    [19] H Kind, H Yan, B Messer et al. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 14, 158(2002).

    [20] Y Cui, Z H Zhong, D L Wang et al. High performance silicon nanowire field effect transistors. Nano Lett, 3, 149(2003).

    [21] M H Huang, S Mao, H Feick et al. Room-temperature ultraviolet nanowire nanolasers. Science, 292, 1897(2001).

    [22] H M Zhu, Y P Fu, F Meng et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 14, 636(2015).

    [23] R F Oulton, V J Sorger, D A Genov et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics, 2, 496(2008).

    [24] E Wertz, A Amo, D D Solnyshkov et al. Propagation and amplification dynamics of 1D polariton condensates. Phys Rev Lett, 109, 216404(2012).

    [25] E Wertz, L Ferrier, D D Solnyshkov et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat Phys, 6, 860(2010).

    [26] F Manni, K G Lagoudakis, B Pietka et al. Polariton condensation in a one-dimensional disordered potential. Phys Rev Lett, 106, 176401(2011).

    [27] M S Gudiksen, L J Lauhon, J F Wang et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 415, 617(2002).

    [28] W N Du, X X Wu, S Zhang et al. All optical switching through anistropic gain of CsPbBr 3 single crystal microplatelet. Nano Lett, 22, 4049(2022).

    [29] Z Y Wang, J Y Liu, Z Q Xu et al. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires. Nanoscale, 8, 6258(2016).

    [30] Q Y Shang, C Li, S Zhang et al. Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr 3 nanowire crystal by exciton-polariton. Nano Lett, 20, 1023(2020).

    [31] L J Lauhon, M S Gudiksen, D L Wang et al. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature, 420, 57(2002).

    [32] M Shahmohammadi, J D Ganière, H Zhang et al. Excitonic diffusion in InGaN/GaN core-shell nanowires. Nano Lett, 16, 243(2016).

    [33] Y Meng, Z X Lai, F Z Li et al. Perovskite core-shell nanowire transistors: Interfacial transfer doping and surface passivation. ACS Nano, 14, 12749(2020).

    [34] S K Ray, A K Katiyar, A K Raychaudhuri. One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications-a review. Nanotechnology, 28, 092001(2017).

    [35] G S Kumar, R R Sumukam, R K Rajaboina et al. Perovskite nanowires for next-generation optoelectronic devices: Lab to fab. ACS Appl Energy Mater, 5, 1342(2022).

    [36] E Barrigón, M Heurlin, Z X Bi et al. Synthesis and applications of III-V nanowires. Chem Rev, 119, 9170(2019).

    [37] R X Yan, D Gargas, P D Yang. Nanowire photonics. Nat Photonics, 3, 569(2009).

    [38] X M Yuan, D Pan, Y J Zhou et al. Selective area epitaxy of III-V nanostructure arrays and networks: Growth, applications, and future directions. Appl Phys Rev, 8, 021302(2021).

    [39] A D Handoko, G K L Goh. One-dimensional perovskite nanostructures. Sci Adv Mater, 2, 16(2010).

    [40] P Yang, H Yan, S Mao et al. Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater, 12, 323(2002).

    [41] S Ganji. Nanowire growths, and mechanisms of these growths for developing novel nanomaterials. J Nanosci Nanotechnol, 19, 1849(2019).

    [42] C H Ye. Recent progress in understanding the growth mechanism of one-dimensional nanostructures by vapor phase processes. Sci Adv Mat, 2, 365(2010).

    [43] S A Fortuna, X L Li. Metal-catalyzed semiconductor nanowires: A review on the control of growth directions. Semicond Sci Technol, 25, 024005(2010).

    [44] J Zhang. Perovskite exciton-polaritons. J Semicond, 40, 020201(2019).

    [45] W N Du, S Zhang, Q Zhang et al. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater, 31, e1804894(2019).

    [46] S Zhang, Y G Zhong, F Yang et al. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction. Photonics Res, 8, 72(2020).

    [47] Q Zhang, Q Y Shang, R Su et al. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett, 21, 1903(2021).

    [48] J Chen, W N Du, M L Shi et al. Perovskite quantum dot lasers. Infomat, 2, 170(2020).

    [49] Q Zhang, R Su, W N Du et al. Advances in small perovskite-based lasers. Small Methods, 1, 1700163(2017).

    [50] C Y Zhao, C J Qin. Quasi-2D lead halide perovskite gain materials toward electrical pumping laser. Nanophotonics, 10, 2167(2021).

    [51] H N Liu, H Zhang, X L Xu et al. The opto-electronic functional devices based on three-dimensional lead halide perovskites. Appl Sci, 11, 1453(2021).

    [52] J Kasprzak, M Richard, S Kundermann et al. Bose–Einstein condensation of exciton polaritons. Nature, 443, 409(2006).

    [53] A Kavokin, T C H Liew, C Schneider et al. Polariton condensates for classical and quantum computing. Nat Rev Phys, 4, 435(2022).

    [54] R Su, A Fieramosca, Q Zhang et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat Mater, 20, 1315(2021).

    [55] R Su, S Ghosh, J Wang et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat Phys, 16, 301(2020).

    [56] V Ardizzone, L De Marco, M De Giorgi et al. Emerging 2D materials for room-temperature polaritonics. Nanophotonics, 8, 1547(2019).

    [57] A Amo, J Lefrère, S Pigeon et al. Superfluidity of polaritons in semiconductor microcavities. Nat Phys, 5, 805(2009).

    [58] Q J Chen, J Stajic, S N Tan et al. BCS-BEC crossover: From high temperature superconductors to ultracold superfluids. Phys Rep, 412, 1(2005).

    [59] H Yang, NY Kim. Microcavity exciton-polariton quantum spin fluids. Adv Quantum Technol, 12, 2100137(2022).

    [60] A Amo, D Sanvitto, F P Laussy et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 457, 291(2009).

    [61] K G Lagoudakis, M Wouters, M Richard et al. Quantized vortices in an exciton–polariton condensate. Nat Phys, 4, 706(2008).

    [62] K G Lagoudakis, T Ostatnický, A V Kavokin et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science, 326, 974(2009).

    [63] X H Gao, W Hu, S Stefan et al. Unidirectional vortex waveguides and multistable vortex pairs in polariton condensates. Opt Lett, 47, 3235(2022).

    [64] V Ardizzone, F Riminucci, S Zanotti et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature, 605, 447(2022).

    [65] F Yang, A C Wang, S Yue et al. Lead-free perovskites: Growth, properties, and applications. Sci China Mater, 64, 2889(2021).

    [66] W Xie, H X Dong, S F Zhang et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys Rev Lett, 108, 166401(2012).

    [67] J X Zhao, R Su, A Fieramosca et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett, 21, 3331(2021).

    [68] R Su, C Diederichs, J Wang et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 17, 3982(2017).

    [69] D Bajoni. Polariton lasers. Hybrid light-matter lasers without inversion. J Phys D, 45, 313001(2012).

    [70] R Su, J Wang, J X Zhao et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci Adv, 4, eaau0244(2018).

    [71] J D Joannopoulos, P R Villeneuve, S H Fan. Photonic crystals: Putting a new twist on light. Nature, 386, 143(1997).

    [72] A Birner, R B Wehrspohn, U M Gösele et al. Silicon-based photonic crystals. Adv Mater, 13, 377(2001).

    [73] A Biswal, R Kumar, C Nayak et al. Photonic bandgap characteristics of GaAs/AlAs-based one-dimensional quasi-periodic photonic crystal. Optik, 234, 166597(2021).

    [74] LIS S Sudha Maria, K Rajasimha, K Debnath et al. Femtosecond laser micromachined one-dimensional photonic crystal channel waveguides. Opt Mater, 126, 112114(2022).

    [75] A V Zayats, I I Smolyaninov, A A Maradudin. Nano-optics of surface plasmon polaritons. Phys Rep, 408, 131(2005).

    [76] J W Shi, J R Zhu, X X Wu et al. Enhanced trion emission and carrier dynamics in monolayer WS 2 coupled with plasmonic nanocavity. Adv Optical Mater, 8, 2001147(2020).

    [77] X X Wu, W Y Jiang, X F Wang et al. Inch-scale ball-in-bowl plasmonic nanostructure arrays for polarization-independent second-harmonic generation. ACS Nano, 15, 1291(2021).

    [78] H Y Ma, X X Wu, W Du et al. Edge Raman enhancement at layered PbI 2 platelets induced by laser waveguide effect. Nanotechnology, 33, 035203(2022).

    [79] M Kuttge, de Abajo F J García, A Polman. Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett, 10, 1537(2010).

    [80] R Chikkaraddy, B de Nijs, F Benz et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127(2016).

    [81] M Barth, S Schietinger, S Fischer et al. Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett, 10, 891(2010).

    [82] D Conteduca, C Reardon, M G Scullion et al. Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics, 2, 086101(2017).

    [83] D Conteduca, F Dell’Olio, F Innone et al. Rigorous design of an ultra-high Q/ V photonic/plasmonic cavity to be used in biosensing applications. Opt Laser Technol, 77, 151(2016).

    [84] V Konopsky, V Prokhorov, D Lypenko et al. Electrical excitation of long-range surface plasmons in PC/OLED structure with two metal nanolayers. Nanomicro Lett, 12, 35(2020).

    [85] Z Wu, L Zhang, W Sun et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science, 354, 83(2016).

    [86] A H C Neto, F Guinea, N M R Peres et al. The electronic properties of graphene. Rev Mod Phys, 81, 109(2009).

    [87] A S Phani, J Woodhouse, N A Fleck. Wave propagation in two-dimensional periodic lattices. J Acoust Soc Am, 119, 1995(2006).

    [88] R Su, S Ghosh, T C H Liew et al. Optical switching of topological phase in a perovskite polariton lattice. Sci Adv, 7, eabf8049(2021).

    [89] P St-Jean, V Goblot, E Galopin et al. Lasing in topological edge states of a one-dimensional lattice. Nat Photonics, 11, 651(2017).

    [90] N Pernet, P St-Jean, D D Solnyshkov et al. Gap solitons in a one-dimensional driven-dissipative topological lattice. Nat Phys, 18, 678(2022).

    [91] M Parto, S Wittek, H Hodaei et al. Edge-mode lasing in 1D topological active arrays. Phys Rev Lett, 120, 113901(2018).

    [92] X Zhu, H Wang, S K Gupta et al. Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Phys Rev Res, 2, 013280(2020).

    [93] H Zhao, P Miao, M H Teimourpour et al. Topological hybrid silicon microlasers. Nat Commun, 9, 981(2018).

    [94] M Xiao, Z Q Zhang, C T Chan. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys Rev X, 4, 021017(2014).

    [95] Y Ota, R Katsumi, K Watanabe et al. Topological photonic crystal nanocavity laser. Commun Phys, 1, 86(2018).

    [96] D F Jin, T Christensen, M Soljačić et al. Infrared topological plasmons in graphene. Phys Rev Lett, 118, 245301(2017).

    [97] K J Fang, Z F Yu, S H Fan. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat Photonics, 6, 782(2012).

    Yutong Zhang, Zhuoya Zhu, Shuai Zhang, Xianxin Wu, Wenna Du, Xinfeng Liu. Spectroscopy and carrier dynamics of one-dimensional nanostructures[J]. Journal of Semiconductors, 2022, 43(12): 121201
    Download Citation