• Photonics Research
  • Vol. 8, Issue 5, 648 (2020)
Junjie Yu1、5、*, Chaofeng Miao1、2、3, Jun Wu4, and Changhe Zhou1、6、*
Author Affiliations
  • 1Laboratory of Information Optics and Opto-electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
  • 5e-mail: Junjiey@siom.ac.cn
  • 6e-mail: chazhou@mail.shcnc.ac.cn
  • show less
    DOI: 10.1364/PRJ.387527 Cite this Article Set citation alerts
    Junjie Yu, Chaofeng Miao, Jun Wu, Changhe Zhou. Circular Dammann gratings for enhanced control of the ring profile of perfect optical vortices[J]. Photonics Research, 2020, 8(5): 648 Copy Citation Text show less
    References

    [1] J. F. Nye, M. V. Berry. Dislocations in wave trains. Proc. R. Soc. Lond. A, 336, 165-190(1974).

    [2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [4] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [5] M. Kamper, H. Ta, N. A. Jensen, S. W. Hell, S. Jakobs. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat. Commun., 9, 4762(2018).

    [6] Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, D. G. Grier. Optical forces arising from phase gradients. Phys. Rev. Lett., 100, 013602(2008).

    [7] M. Woerdemann, C. Alpmann, M. Esseling, C. Denz. Advanced optical trapping by complex beam shaping. Laser Photon. Rev., 7, 839-854(2013).

    [8] G. Chen, X. Huang, C. Xu, L. Huang, J. Xie, D. Deng. Propagation properties of autofocusing off-axis hollow vortex Gaussian beams in free space. Opt. Express, 27, 6357-6369(2019).

    [9] G. Molina-Terriza, A. Vaziri, J. Řeháček, Z. Hradil, A. Zeilinger. Triggered qutrits for quantum communication protocols. Phys. Rev. Lett., 92, 167903(2004).

    [10] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [11] A. E. Willner. Vector-mode multiplexing brings an additional approach for capacity growth in optical fibers. Light Sci. Appl., 7, 18002(2018).

    [12] G. Foo, D. M. Palacios, G. A. Swartzlander. Optical vortex coronagraph. Opt. Lett., 30, 3308-3310(2005).

    [13] S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [14] Y. Pan, W. Jia, J. Yu, K. Dobson, C. Zhou, Y. Wang, T.-C. Poon. Edge extraction using a time-varying vortex beam in incoherent digital holography. Opt. Lett., 39, 4176-4179(2014).

    [15] T. Yuan, Y. Cheng, H. Wang, Y. Qin, B. Fan. Radar imaging using electromagnetic wave carrying orbital angular momentum. J. Electron. Imaging, 26, 023016(2017).

    [16] D. Gauthier, P. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, G. De Ninno. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 8, 14971(2017).

    [17] R. Géneaux, A. Camper, T. Auguste, O. Gobert, J. Caillat, R. Taieb, T. Ruchon. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nat. Commun., 7, 12583(2016).

    [18] M. Zuerch, C. Kern, P. Hansinger, A. Dreischuh, C. Spielmann. Strong-field physics with singular light beams. Nat. Phys., 8, 743-746(2012).

    [19] A. Denoeud, L. Chopineau, A. Leblanc, F. Quere. Interaction of ultraintense laser vortices with plasma mirrors. Phys. Rev. Lett., 118, 033902(2017).

    [20] J. Wang, M. Zepf, S. G. Rykovanov. Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions. Nat. Commun., 10, 5554(2019).

    [21] S. Sasaki, I. McNulty. Proposal for generating brilliant x-ray beams carrying orbital angular momentum. Phys. Rev. Lett., 100, 124801(2008).

    [22] Y. Chen, J. Li, K. Z. Hatsagortsyan, C. H. Keitel. γ-ray beams with large orbital angular momentum via nonlinear Compton scattering with radiation reaction. Phys. Rev. Lett., 121, 074801(2018).

    [23] R. Imai, N. Kanda, T. Higuchi, K. Konishi, M. Kuwata-Gonokami. Generation of broadband terahertz vortex beams. Opt. Lett., 39, 3714-3717(2014).

    [24] A. A. Sirenko, P. Marsik, C. Bernhard, T. N. Stanislavchuk, V. Kiryukhin, S.-W. Cheong. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys. Rev. Lett., 122, 237401(2019).

    [25] M. Uchida, A. Tonomura. Generation of electron beams carrying orbital angular momentum. Nature, 464, 737-739(2010).

    [26] A. J. Silenko, P. Zhang, L. Zou. Manipulating twisted electron beams. Phys. Rev. Lett., 119, 243903(2017).

    [27] L. Zhang, P. L. Marston. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E, 84, 065601(2011).

    [28] N. Jiménez, V. Romero-García, L. M. García-Raffi, F. Camarena, K. Staliunas. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett., 112, 204101(2018).

    [29] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the ‘perfect’ optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534-536(2013).

    [30] C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, L. A. Rusch. Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Express, 22, 26117-26127(2014).

    [31] M. Chen, M. Mazilu, Y. Arita, E. M. Wright, K. Dholakia. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett., 38, 4919-4922(2013).

    [32] R. Paez-Lopez, U. Ruiz, V. Arrizon, R. Ramos-Garcia. Optical manipulation using optimal annular vortices. Opt. Lett., 41, 4138-4141(2016).

    [33] S. G. Reddy, P. Chithrabhanu, P. Vaity, A. Aadhi, S. Prabhakar, R. P. Singh. Non-diffracting speckles of a perfect vortex beam. J. Opt., 18, 055602(2016).

    [34] C. Zhang, C. Min, L. Du, X. C. Yuan. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett., 108, 201601(2016).

    [35] N. A. Chaitanya, M. V. Jabir, G. K. Samanta. Efficient nonlinear generation of high power, higher order, ultrafast ‘perfect’ vortices in green. Opt. Lett., 41, 1348-1351(2016).

    [36] M. V. Jabir, N. A. Chaitanya, A. Aadhi, G. K. Samanta. Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons. Sci. Rep., 6, 21877(2016).

    [37] A. Banerji, R. P. Singh, D. Banerjee, A. Bandyopadhyay. Generating a perfect quantum optical vortex. Phys. Rev. A, 94, 053838(2016).

    [38] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 41, 2205-2208(2016).

    [39] S. Fu, C. Gao, T. Wang, S. Zhang, Y. Zhai. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt. Lett., 41, 5454-5457(2016).

    [40] Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, D. Fan. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep., 7, 44096(2017).

    [41] A. A. Kovalev, V. V. Kotlyar, A. P. Porfirev. A highly efficient element for generating elliptic perfect optical vortices. Appl. Phys. Lett., 110, 261102(2017).

    [42] X. Li, H. Ma, C. Yin, J. Tang, H. Li, M. Tang, J. Wang, Y. Tai, X. Li, Y. Wang. Controllable mode transformation in perfect optical vortices. Opt. Express, 26, 651-662(2018).

    [43] Y. Liang, M. Lei, S. Yan, M. Li, Y. Cai, Z. Wang, X. Yu, B. Yao. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl. Opt., 57, 79-84(2018).

    [44] Y. Liang, S. Yan, M. He, M. Li, Y. Cai, Z. Wang, M. Lei, B. Yao. Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams. Opt. Lett., 44, 1504-1507(2019).

    [45] I. Amidror. Fourier spectrum of radially periodic images. J. Opt. Soc. Am. A, 14, 816-826(1997).

    [46] I. Amidror. Fourier spectra of radially periodic images with a non-symmetric radial period. J. Opt. A, 1, 621-625(1999).

    [47] C. Zhou, J. Jia, L. Liu. Circular Dammann grating. Opt. Lett., 28, 2174-2176(2003).

    [48] S. Zhao, P. S. Chung. Design of a circular Dammann grating. Opt. Lett., 31, 2387-2389(2006).

    [49] U. Levy, B. Desiatov, I. Goykhman, T. Nachmias, A. Ohayon, S. E. Meltzer. Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography. Opt. Lett., 35, 880-882(2010).

    [50] J. Yu, J. Wu, C. Xiang, H. Cao, L. Zhu, C. Zhou. A generalized circular Dammann grating with controllable impulse ring profile. IEEE Photon. Technol. Lett., 30, 801-804(2018).

    [51] L. Niggl, T. Lanzl, M. Maier. Properties of Bessel beams generated by periodic gratings of circular symmetry. J. Opt. Soc. Am. A, 14, 27-33(1997).

    [52] C. Zhou, L. Liu. Numerical study of Dammann array illuminators. Appl. Opt., 34, 5961-5969(1995).

    [53] V. Arrizón, U. Ruiz, D. Sánchez-de-la-Llave, G. Mellado-Villaseñor, A. S. Ostrovsky. Optimum generation of annular vortices using phase diffractive optical elements. Opt. Lett., 40, 1173-1176(2015).

    [54] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [55] J. Pinnell, V. Rodríguez-Fajardo, A. Forbes. How perfect are perfect vortex beams?. Opt. Lett., 44, 5614-5617(2019).

    [56] K. Rong, F. Gan, K. Shi, S. Chu, J. Chen. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv. Mater., 30, 1706546(2018).

    [57] I. Amidror. The Fourier-spectrum of circular sine and cosine gratings with arbitrary radial phase. Opt. Commun., 149, 127-134(1998).

    [58] H. Bateman. Tables of Integral Transforms(1954).

    [59] Y. Surrel. Design of algorithms for phase measurements by the use of phase stepping. Appl. Opt., 35, 51-60(1996).

    Junjie Yu, Chaofeng Miao, Jun Wu, Changhe Zhou. Circular Dammann gratings for enhanced control of the ring profile of perfect optical vortices[J]. Photonics Research, 2020, 8(5): 648
    Download Citation