• Laser & Optoelectronics Progress
  • Vol. 57, Issue 17, 171401 (2020)
Wang Zhang1、*, Bin Tang2、**, Yanbin Guo1, Xueming Hua3, and Fang Li3
Author Affiliations
  • 1School of Material Science and Engineering, Shanghai Dianji University, Shanghai 201306, China
  • 2Wujing Thermal Power Plant of Shanghai Electric Power Co., Ltd, Shanghai 200241, China
  • 3Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai, 200240, China
  • show less
    DOI: 10.3788/LOP57.171401 Cite this Article Set citation alerts
    Wang Zhang, Bin Tang, Yanbin Guo, Xueming Hua, Fang Li. Investigation on Surface Forming and Stability of Laser+Pulse Melting Gas Metal Arc Hybrid Welding[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171401 Copy Citation Text show less
    References

    [1] Karlsson J, Norman P. Kaplan A F H, et al. Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding[J]. Applied Surface Science, 257, 7501-7506(2011).

    [2] Norman P M, Karlsson J. Kaplan A F H. Mechanisms forming undercuts during laser hybrid arc welding[J]. Physics Procedia, 12, 201-207(2011).

    [3] Campana G, Fortunato A, Ascari A et al. The influence of arc transfer mode in hybrid laser-mig welding[J]. Journal of Materials Processing Technology, 191, 111-113(2007).

    [4] Li M, Zhang W, Hua X M et al. Investigation of plasma and metal transfer dynamic behavior during fiber laser GMAW-P hybrid welding[J]. Chinese Journal of Lasers, 44, 0402008(2017).

    [5] Zhang W, Hua X M, Liao W et al. Behavior of the plasma characteristic and droplet transfer in CO2 laser-GMAW-P hybrid welding[J]. The International Journal of Advanced Manufacturing Technology, 72, 935-942(2014).

    [6] Bagger C, Olsen F O. Review of laser hybrid welding[J]. Journal of Laser Applications, 17, 2-14(2005).

    [7] Yang Y, Cao L C, Zhou Q et al. Multi-objective process parameters optimization of Laser-magnetic hybrid welding combining Kriging and NSGA-II[J]. Robotics and Computer-Integrated Manufacturing, 49, 253-262(2018).

    [8] Gao X S, Wu C S, Goecke S F et al. Effects of process parameters on weld bead defects in oscillating laser-GMA hybrid welding of lap joints[J]. The International Journal of Advanced Manufacturing Technology, 93, 1877-1892(2017).

    [9] Ruggiero A, Tricarico L, Olabi A G et al. Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316[J]. Optics & Laser Technology, 43, 82-90(2011).

    [10] Moradi M, Ghoreishi M, Frostevarg J et al. An investigation on stability of laser hybrid arc welding[J]. Optics and Lasers in Engineering, 51, 481-487(2013).

    [11] Benyounis K Y, Olabi A G. Hashmi M S J. Multi-response optimization of CO2 laser-welding process of austenitic stainless steel[J]. Optics & Laser Technology, 40, 76-87(2008).

    [12] Moradi M, Ghoreishi M. Influences of laser welding parameters on the geometric profile of NI-base superalloy Rene 80 weld-bead[J]. The International Journal of Advanced Manufacturing Technology, 55, 205-215(2011).

    [13] Moradi M, Ghoreishi M, Frostevarg J et al. An investigation on stability of laser hybrid arc welding[J]. Optics and Lasers in Engineering, 51, 481-487(2013).

    Wang Zhang, Bin Tang, Yanbin Guo, Xueming Hua, Fang Li. Investigation on Surface Forming and Stability of Laser+Pulse Melting Gas Metal Arc Hybrid Welding[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171401
    Download Citation