• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1202001 (2022)
Songyan Xue1, Huace Hu1, Yinuo Xu1, Yingchen Wang1, Jing Long1, Binzhang Jiao1, Yuncheng Liu1, Xuhao Fan1, Hui Gao1、2, Leimin Deng1、2, and Wei Xiong1、2、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Optics Valley Laboratory, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.1202001 Cite this Article Set citation alerts
    Songyan Xue, Huace Hu, Yinuo Xu, Yingchen Wang, Jing Long, Binzhang Jiao, Yuncheng Liu, Xuhao Fan, Hui Gao, Leimin Deng, Wei Xiong. Research Progress and Application of Femtosecond Laser-Induced Patterned Growth of Nanomaterials[J]. Chinese Journal of Lasers, 2022, 49(12): 1202001 Copy Citation Text show less
    References

    [1] Cui M[D]. Construction and applications of electrochemical sensors based on nanomaterials(2014).

    [2] Zhou J, Chizhik A I, Chu S et al. Single-particle spectroscopy for functional nanomaterials[J]. Nature, 579, 41-50(2020).

    [3] Binnig G, Rohrer H. Scanning tunneling microscopy: from birth to adolescence[J]. Reviews of Modern Physics, 59, 615-625(1987).

    [4] Wang L W[D]. Synthesis, modification and gas sensing investigation of semiconductor metal oxide nanomaterials(2014).

    [5] Valiev R. Nanomaterial advantage[J]. Nature, 419, 887-889(2002).

    [6] Ding J, Wang H L, Li Z et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 7, 11004-11015(2013).

    [7] Yang Q, Lu Z Y, Sun X M et al. Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance[J]. Scientific Reports, 3, 3537(2013).

    [8] Theerthagiri J, Salla S, Senthil R A et al. A review on ZnO nanostructured materials: energy, environmental and biological applications[J]. Nanotechnology, 30, 392001(2019).

    [9] Shi X L, Zou J, Chen Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 120, 7399-7515(2020).

    [10] Schierning G. Silicon nanostructures for thermoelectric devices: a review of the current state of the art[J]. Physica Status Solidi (a), 211, 1235-1249(2014).

    [11] Tarish S, Xu Y, Wang Z J et al. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays[J]. Nanotechnology, 28, 405501(2017).

    [12] Pan Z Y, Liang J, Zheng Z Z et al. The application of ZnO luminescent nanoparticles in labeling mice[J]. Contrast Media & Molecular Imaging, 6, 328-330(2011).

    [13] Zhang Z Y, Xiong H M. Photoluminescent ZnO nanoparticles and their biological applications[J]. Materials, 8, 3101-3127(2015).

    [14] Shimizu Y, Egashira M. Basic aspects and challenges of semiconductor gas sensors[J]. MRS Bulletin, 24, 18-24(1999).

    [15] Low M J, Lee H, Lim C H J et al. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing[J]. Applied Surface Science, 526, 146647(2020).

    [16] Long J, Jiao F Z, Fan X H et al. Femtosecond laser assembly of one-dimensional nanomaterials and their application[J]. Chinese Journal of Lasers, 48, 0202017(2021).

    [17] Wang H, Zhang Y L, Xia H et al. Photodynamic assembly of nanoparticles towards designable patterning[J]. Nanoscale Horizons, 1, 201-211(2016).

    [18] Long J, Xiong W, Wei C Y et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing[J]. Nano Letters, 20, 5159-5166(2020).

    [19] Pevzner A, Engel Y, Elnathan R et al. Confinement-guided shaping of semiconductor nanowires and nanoribbons: “writing with nanowires”[J]. Nano Letters, 12, 7-12(2012).

    [20] Sugioka K. Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review[J]. International Journal of Extreme Manufacturing, 1, 012003(2019).

    [21] Xiong W, Zhou Y S, Hou W J et al. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Frontiers of Optoelectronics, 8, 351-378(2015).

    [22] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electronic Advances, 3, 190042(2020).

    [23] Yeh C C, Zan H W, Soppera O. Solution-based micro- and nanoscale metal oxide structures formed by direct patterning for electro-optical applications[J]. Advanced Materials, 30, 1800923(2018).

    [24] Zhao L L, Liu Z, Chen D et al. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage[J]. Nano-Micro Letters, 13, 49(2021).

    [25] Hong S, Lee H, Yeo J et al. Digital selective laser methods for nanomaterials: from synthesis to processing[J]. Nano Today, 11, 547-564(2016).

    [26] Lawson R A, Robinson A P G[M]. Materials and processes for next generation lithography, 1-90(2016).

    [27] Xu W Y, Li H, Xu J B et al. Recent advances of solution-processed metal oxide thin-film transistors[J]. ACS Applied Materials & Interfaces, 10, 25878-25901(2018).

    [28] Park J W, Kang B H, Kim H J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics[J]. Advanced Functional Materials, 30, 1904632(2020).

    [29] Yeh C C, Liu H C, Chuang M Y et al. Controllable formation of zinc oxide micro- and nanostructures via DUV direct patterning[J]. Advanced Materials Interfaces, 3, 1600373(2016).

    [30] Faustini M, Vayer M, Marmiroli B et al. Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications[J]. Chemistry of Materials, 22, 5687-5694(2010).

    [31] DeMaria A J, Stetser D A, Heynau H. Self mode-locking of lasers with saturable absorbers[J]. Applied Physics Letters, 8, 174-176(1966).

    [32] Chen Z, Wei Y, Luo C X et al. Laser direct writing carbon nanotube arrays on transparent substrates[J]. Applied Physics Letters, 90, 133108(2007).

    [33] Park J B, Xiong W, Gao Y et al. Fast growth of graphene patterns by laser direct writing[J]. Applied Physics Letters, 98, 123109(2011).

    [34] Yeo J, Hong S, Wanit M et al. Rapid, one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth[J]. Advanced Functional Materials, 23, 3316-3323(2013).

    [35] Kang B, Han S, Kim J et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle[J]. The Journal of Physical Chemistry C, 115, 23664-23670(2011).

    [36] Petridis C, Lin Y H, Savva K et al. Post-fabrication, in situ laser reduction of graphene oxide devices[J]. Applied Physics Letters, 102, 093115(2013).

    [37] Jung J, Lee J, Kim Y et al. Ultrafast and low-temperature synthesis of patternable MoS2 using laser irradiation[J]. Journal of Physics D: Applied Physics, 52, 18LT01(2019).

    [38] Liu Y K, Lee M T. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate[J]. ACS Applied Materials & Interfaces, 6, 14576-14582(2014).

    [39] Hong S, Yeo J, Manorotkul W et al. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate[J]. Nanoscale, 5, 3698-3703(2013).

    [40] Huang C C, Medina H, Chen Y Z et al. Transfer-free growth of atomically thin transition metal disulfides using a solution precursor by a laser irradiation process and their application in low-power photodetectors[J]. Nano Letters, 16, 2463-2470(2016).

    [41] Kwon K, Shim J, Lee J O et al. Localized laser-based photohydrothermal synthesis of functionalized metal-oxides[J]. Advanced Functional Materials, 25, 2222-2229(2015).

    [42] Shank C V, Ippen E P. Subpicosecond kilowatt pulses from a mode-locked cw dye laser[J]. Applied Physics Letters, 24, 373-375(1974).

    [43] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 16, 42-44(1991).

    [44] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [45] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 1, 041303(2014).

    [46] Fann W S, Storz R, Tom H W et al. Electron thermalization in gold[J]. Physical Review. B, Condensed Matter, 46, 13592-13595(1992).

    [47] Sun C K, Vallée F, Acioli L H et al. Femtosecond-tunable measurement of electron thermalization in gold[J]. Physical Review. B, Condensed Matter, 50, 15337-15348(1994).

    [48] Wellershoff S S, Hohlfeld J, Güdde J et al. The role of electron-phonon coupling in femtosecond laser damage of metals[J]. Applied Physics A, 69, S99-S107(1999).

    [49] Hohlfeld J, Wellershoff S S, Güdde J et al. Electron and lattice dynamics following optical excitation of metals[J]. Chemical Physics, 251, 237-258(2000).

    [50] Tian M Y, Zuo P, Liang M S et al. Femtosecond laser processing of low-dimensional nanomaterials and its application[J]. Chinese Journal of Lasers, 48, 0202004(2021).

    [51] Sugioka K, Cheng Y. A tutorial on optics for ultrafast laser materials processing: basic microprocessing system to beam shaping and advanced focusing methods[J]. Advanced Optical Technologies, 1, 353-364(2012).

    [52] Garlapati S K, Divya M, Breitung B et al. Printed electronics based on inorganic semiconductors: from processes and materials to devices[J]. Advanced Materials, 30, 1707600(2018).

    [53] Fukuda K, Someya T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology[J]. Advanced Materials, 29, 1602736(2017).

    [54] Liu H S, Chang W C, Chou C Y et al. Controllable electrochromic polyamide film and device produced by facile ultrasonic spray-coating[J]. Scientific Reports, 7, 11982(2017).

    [55] Isakov I, Faber H, Grell M et al. Exploring the leidenfrost effect for the deposition of high-quality In2O3 layers via spray pyrolysis at low temperatures and their application in high electron mobility transistors[J]. Advanced Functional Materials, 27, 1606407(2017).

    [56] Koutsioukis A, Georgakilas V, Belessi V et al. Highly conductive water-based polymer/graphene nanocomposites for printed electronics[J]. Chemistry-A European Journal, 23, 8268-8274(2017).

    [57] Perelaer J, de Gans B J, Schubert U S. Ink-jet printing and microwave sintering of conductive silver tracks[J]. Advanced Materials, 18, 2101-2104(2006).

    [58] Tang A M, Liu Y, Wang Q W et al. A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing[J]. Carbohydrate Polymers, 148, 29-35(2016).

    [59] Joseph A M, Nagendra B, Bhoje G E et al. Screen-printable electronic ink of ultrathin boron nitride nanosheets[J]. ACS Omega, 1, 1220-1228(2016).

    [60] Yudistira H T, Tenggara A P, Oh S S et al. High-resolution electrohydrodynamic jet printing for the direct fabrication of 3D multilayer terahertz metamaterial of high refractive index[J]. Journal of Micromechanics and Microengineering, 25, 045006(2015).

    [61] Kwon H J, Chung S, Jang J et al. Laser direct writing and inkjet printing for a sub-2 μm channel length MoS2 transistor with high-resolution electrodes[J]. Nanotechnology, 27, 405301(2016).

    [62] Tanaka T, Ishikawa A, Kawata S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure[J]. Applied Physics Letters, 88, 081107(2006).

    [63] Lu W E, Zhang Y L, Zheng M L et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction[J]. Optical Materials Express, 3, 1660-1673(2013).

    [64] Cao Y Y, Takeyasu N, Tanaka T et al. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction[J]. Small, 5, 1144-1148(2009).

    [65] Huang Y J, Xie X Z, Li M N et al. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles[J]. Optics Express, 29, 4453-4463(2021).

    [66] Blasco E, Müller J, Müller P et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing[J]. Advanced Materials, 32, 2001062(2020).

    [67] Özgür Ü, Alivov Y I, Liu C et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 98, 041301(2005).

    [68] Guo L I, Xia H, Fan H T et al. Femtosecond laser direct patterning of sensing materials toward flexible integration of micronanosensors[J]. Optics Letters, 35, 1695-1697(2010).

    [69] Long J[D]. Fabrication and assembly of metal oxide micro/nano structures by femtosecond laser direct writing(2021).

    [70] Wang Y C[D]. Femtosecond laser-induced growth of zinc oxide patterns and fabrication of micro/nano UV detector(2021).

    [71] Segawa H, Matsuo S, Misawa H. Fabrication of fine-pitch TiO2-organic hybrid dot arrays using multi-photon absorption of femtosecond pulses[J]. Applied Physics A, 79, 407-409(2004).

    [72] Yu S Y, Schrodj G, Mougin K et al. Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties[J]. Advanced Materials, 30, 1805093(2018).

    [73] An J N, Le T S D, Lim C H J et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Advanced Science, 5, 1800496(2018).

    [74] Krishnan U, Kaur M, Singh K et al. A synoptic review of MoS2: synthesis to applications[J]. Superlattices and Microstructures, 128, 274-297(2019).

    [75] Xu Y N[D]. Femtosecond laser direct writing of molybdenum sulfide patterns and micro/nanoscale sensors(2021).

    [76] Kong D S, Wang H T, Cha J J et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Letters, 13, 1341-1347(2013).

    [77] Han S W, Yun W S, Woo W J et al. Interface defect engineering of a large-scale CVD-grown MoS2 monolayer via residual sodium at the SiO2/Si substrate[J]. Advanced Materials Interfaces, 8, 2100428(2021).

    [78] Zhao Y, Han Q, Cheng Z H et al. Integrated graphene systems by laser irradiation for advanced devices[J]. Nano Today, 12, 14-30(2017).

    [79] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [80] Wu W L, Yu B W. Corn flour nano-graphene prepared by the hummers redox method[J]. ACS Omega, 5, 30252-30256(2020).

    [81] Berger C, Song Z M, Li X B et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 312, 1191-1196(2006).

    [82] Bae S H, Lee Y, Sharma B K et al. Graphene-based transparent strain sensor[J]. Carbon, 51, 236-242(2013).

    [83] Guo H, Yan J F, Li X et al. Patterned graphene oxide by spatially-shaped femtosecond laser[J]. Chinese Journal of Lasers, 48, 0202018(2021).

    [84] Zhang Y L, Guo L, Wei S et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 5, 15-20(2010).

    [85] Xiong W, Zhou Y S, Hou W J et al. Direct writing of graphene patterns on insulating substrates under ambient conditions[J]. Scientific Reports, 4, 4892(2014).

    [86] Dorin B, Parkinson P, Scully P. Direct laser write process for 3D conductive carbon circuits in polyimide[J]. Journal of Materials Chemistry C, 5, 4923-4930(2017).

    [87] Liu S Y, Zhang J Y. Principles and applications of ultrafast laser processing based on spatial light modulators[J]. Laser & Optoelectronics Progress, 57, 111431(2020).

    [88] Wan Z F, Wang S J, Haylock B et al. Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser[J]. Carbon, 141, 83-91(2019).

    [89] Hayashi S, Tsunemitsu K, Terakawa M. Laser direct writing of graphene quantum dots inside a transparent polymer[J]. Nano Letters, 22, 775-782(2022).

    [90] Lin J, Peng Z, Liu Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).

    [91] El-Kady M F, Strong V, Dubin S et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 335, 1326-1330(2012).

    [92] Shen D Z, Zou G S, Liu L et al. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer[J]. ACS Applied Materials & Interfaces, 10, 5404-5412(2018).

    [93] Wu X F, Mei S L. Research progress in femtosecond laser machining mechanism and simulation analysis[J]. Laser & Optoelectronics Progress, 58, 1900005(2021).

    Songyan Xue, Huace Hu, Yinuo Xu, Yingchen Wang, Jing Long, Binzhang Jiao, Yuncheng Liu, Xuhao Fan, Hui Gao, Leimin Deng, Wei Xiong. Research Progress and Application of Femtosecond Laser-Induced Patterned Growth of Nanomaterials[J]. Chinese Journal of Lasers, 2022, 49(12): 1202001
    Download Citation