• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021352 (2022)
Shao-Jie CHANG1、2, Zhen-Hua WU1、2、*, Jie HUANG1、2, Tao ZHAO1、2, Di-Wei LIU1、2, Min HU1、2、**, Yan-Yu WEI1、3, Yu-Bin GONG1、3, and Sheng-Gang LIU1、2
Author Affiliations
  • 1Terahertz Science and Technology Research Center,University of Electronic Science and Technology of China,Chengdu 610054,China
  • 2Key Laboratory of Terahertz Technology,Ministry of Education,Chengdu 610054,China
  • 3National Key Laboratory of Science and Technology on Vacuum Electronics,University of Electronic Science and Technology of China,Chengdu 610054,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.005 Cite this Article
    Shao-Jie CHANG, Zhen-Hua WU, Jie HUANG, Tao ZHAO, Di-Wei LIU, Min HU, Yan-Yu WEI, Yu-Bin GONG, Sheng-Gang LIU. The research progress of vacuum electron device in terahertz band[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021352 Copy Citation Text show less
    References

    [1] Wenxiang WANG. Microwave Engineering Technology(2014).

    [2] Na QI, Zhuoyong ZHANG, Yuhong XIANG. Research on the Application of Terahertz Technology in Medical Testing and Diagnosis. Spectroscopy and Spectral Analysis, 33, 2064-2070(2013).

    [3] Min ZHU. Research on Efficient Analysis of Electromagnetic Scattering Characteristics of Mixed Targets and RCS Reduction(2021).

    [4] Jueqi LI. Research on THz Backward Wave Oscillator(2011).

    [5] Hongzhu Xi, Jianguo Wang, Zhaochang He et al. Continuous-wave Y-band planar BWO with wide tunable bandwidth. Scientific reports, 8(2018).

    [6] J Feng, Y Tang, D Gamzina et al. Fabrication of a 0.346-THz BWO for Plasma Diagnostics. IEEE Transactions on Electron Devices, 1-8(2018).

    [7] C Paoloni, A D Carlo, F Bouamrane et al. Design and Realization Aspects of 1-THz Cascade Backward Wave Amplifier Based on Double Corrugated Waveguide. IEEE Transactions on Electron Devices, 60, 1236-1243(2013).

    [8] Zaigao Chen, Jianguo Wang, Yue Wang. Novel Low-voltage Subterahertz-range Radial Backward Wave Oscillator. Physics of Plasmas24, 1, 13109.

    [9] Ru-Jing JI. The Design and Experiment of 3mm Traveling Wave Tube(2020).

    [10] J A Dayton, C L Kory, G T Mearini et al. Fabrication and testing of the0.650 THz helical BWO(2012).

    [11] J A Dayton, C L Kory, G T Mearini et al. A 650 GHz helical BWO(2008).

    [12] M Kumar, S Aditya, S Wang. A W-Band Backward-Wave Oscillator Based on Planar Helix Slow Wave Structure. IEEE Transactions on Electron Devices, PP, 1-6(2018).

    [13] L Hu, J Cai, Q Zhou et al. Design and test of 220GHz folded-waveguide backward-wave oscillator(2016).

    [14] M Zhang, Y Wei, L Yue et al. A D-band backward-wave oscillator based on quasi-parallel-plate slow-wave structure(2015).

    [15] B Popovic, L Himes, D Gamzina et al. Design and fabrication of a sheet beam BWO at 346 GHz(2015).

    [16] J Zhang, T Zhang, Y Alfadhl et al. Study on Wideband THz Backward Wave Oscillator Driven by Pseudospark-Sourced Sheet Electron Beam. IEEE Transactions on Electron Devices, PP, 1-8(2020).

    [17] X Xiong, Y Wei, S Fei et al. Sine waveguide with a grating reflector for 1-THz backward wave oscillator(2012).

    [18] P C Yin, H R Yin, J Xu et al. 220GHz Sine Waveguide BWO with large Beam Tunnel(2019).

    [19] S Wang, W Shao, W Wang et al. High Power Angular Radial Staggered Vane Backward Wave Oscillator at W-Band. IEEE Electron Device Letters, PP, 1-1(2020).

    [20] C Zhao, S Aditya, S Wang. A Novel Coplanar Slow-Wave Structure for Millimeter-Wave BWO Applications. IEEE Transactions on Electron Devices, 68, 1924-1929(2021).

    [21] R Letizia, M Mineo, C Paoloni. Photonic band gap corrugated slow wave structure for THz sheet-beam vacuum electron devices(2016).

    [22] R Letizia, M Mineo, C Paoloni. Photonic Crystal-Structures for THz Vacuum Electron Devices. IEEE Transactions on Electron Devices, 62, 178-183(2014).

    [23] P Pan, Y Tang, X Bian et al. A G-band Traveling Wave Tube with 20 W Continuous Wave Output Power. IEEE Electron Device Letters, 41, 1-1(2020).

    [24] Y Jiang, W Lei, P Hu et al. Demonstration of a 220-GHz Continuous Wave Traveling Wave Tube. IEEE Transactions on Electron Devices, PP, 1-5(2021).

    [25] Y Jiang, W Lei, P Hu et al. Demonstration of a 220-GHz Continuous Wave Traveling Wave Tube. IEEE Transactions on Electron Devices, PP, 1-5(2021).

    [26] X Bian, P Pan, Y Tang et al. Demonstration of a Pulsed G-Band 50 W Traveling Wave Tube. IEEE Electron Device Letters, PP, 1-1(2020).

    [27] W Liu, Z Zhang, W Liu et al. Demonstration of a High-Power and Wide-Bandwidth G-Band Traveling Wave Tube With Cascade Amplification. IEEE Electron Device Letters, PP, 1-1(2021).

    [28] A M Cook, E L Wright, K T Nguyen et al. Demonstration of a W-Band Traveling-Wave Tube Power Amplifier With 10-GHz Bandwidth. IEEE Transactions on Electron Devices, PP, 1-7(2021).

    [29] P Hu, W Lei, Y Jiang et al. Demonstration of a Watt-Level Traveling Wave Tube Amplifier Operating Above 0.3 THz. IEEE Electron Device Letters, PP, 1-1(2019).

    [30] H Gong, Q Wang, D Deng et al. Third-Harmonic Traveling-Wave Tube Multiplier-Amplifier. IEEE Transactions on Electron Devices, 1-6(2018).

    [31] J Cai, X Wu, J Feng. Traveling-Wave Tube Harmonic Amplifier in Terahertz and Experimental Demonstration. IEEE Transactions on Electron Devices, 62, 648-651(2015).

    [32] D Xu, S Wang, Z Wang et al. Theory and Experiment of High-Gain Modified Angular Log-Periodic Folded Waveguide Slow Wave Structure. IEEE Electron Device Letters, PP, 1-1(2020).

    [33] S Fang, J Xu, H Yin et al. Experimental Verification of the Low Transmission Loss of a Flat-Roofed Sine Waveguide Slow-Wave Structure. IEEE Electron Device Letters, 40, 808-811(2019).

    [34] Z Lu, K Ding, R Wen et al. Novel Double Tunnel Staggered Grating Slow Wave Structure for 0.2 THz Traveling Wave Tube. IEEE Electron Device Letters, 41, 1-1(2020).

    [35] E J Kowalski, M Shapiro, R J Temkin. An Overmoded W-Band Coupled-Cavity TWT. IEEE Transactions on Electron Devices, 62, 1609-1616(2015).

    [36] D J Prakash, Dwye M Mr, M M Argudo et al. Self-Winding Helices as Slow-Wave Structures for Sub-Millimeter Traveling-Wave Tubes. ACS Nano, 15(2020).

    [37] P Horoyski, D Berry, B Steer. A 2 GHz Bandwidth, High Power W-Band Extended Interaction Klystron(2007).

    [38] M Hyttinen, A Roitman, P Horoyski et al. A compact, high power, sub-millimeter-wave Extended Interaction Klystron(2008).

    [39] A Roitman, P Horoyski, B Steer et al. High power CW 264 GHz tunable Extended Interaction Oscillator(2013).

    [40] J Pasour, E Wright, K T Nguyen et al. Demonstration of a Multikilowatt, Solenoidally Focused Sheet Beam Amplifier at 94 GHz. IEEE Transactions on Electron Devices(2014).

    [41] J C Stephens, G Rosenzweig, M A Shapiro et al. Subterahertz Photonic Crystal Klystron Amplifier. Physical Review Letters, 123(2019).

    [42] Y Yong, W He, Z Liang et al. Simulation and Experiments of a W-Band Extended Interaction Oscillator Based on a Pseudospark-Sourced Electron Beam. IEEE Transactions on Electron Devices, 63, 512-516(2015).

    [43] G X Shu, H Yin, L Zhang et al. Demonstration of a Planar W-Band, kW-Level Extended Interaction Oscillator Based on a Pseudospark-Sourced Sheet Electron Beam. IEEE Electron Device Letters, 39, 432-435(2018).

    [44] Z Qu, Z Zhang, Y Ding et al. Design and test of a W-band 100-watts extended interaction oscillator(2018).

    [45] J Wang, X Li, L Rui et al. Experimental Study of a 6 kW W-band PCM Focused Sheet Beam EIO(2019).

    [46] W Liu, Z Zhang, Z Chao et al. Test of terahertz Extended Interaction oscillator(2015).

    [47] P Zhang, Y Ying, X Wang et al. Third-Harmonic Operating Extended Interaction Oscillator(2019).

    [48] R Li, S Li, C Ruan et al. Design and Fabrication of G-band Extended Interaction Klystron with Unequal-length Slots(2019).

    [49] S Li, F Li, J Yang et al. Development of a Miniaturized W-Band Spatial Harmonic Magnetron. IEEE Transactions on Electron Devices, 63, 1-5(2016).

    [50] T Zhang, J Zhang, J Lang et al. Experimental Testing of a W-band spatial harmonic magnetron(2020).

    [51] N I Avtomonov, V D Naumenko, D M Vavriv. Development of terahertz spatial-harmonic magnetrons(2013).

    [52] H Z Xi, Z C He, J G Wang et al. A continuous-wave clinotron at 0.26 THz with sheet electron beam. Physics of Plasmas, 24(2017).

    [53] M V Mil'Cho, I V Lopatin, V V Zavertanny et al. CW clinotrons for the short-wave part of the millimeter waveband(2014).

    [54] A A Danik, A A Likhachev, S S Ponomarenko et al. Compact THz Continuous-Wave Clinotron Oscillators(2019).

    [55] V L Bratman, A E Fedotov, P B Makhalov. Experimental demonstration of Smith–Purcell radiation enhancement by frequency multiplication in open cavity. Applied Physics Letters, 98, 1069(2011).

    [56] L Liu, H Xi, J Zhang et al. The recent progress of THz radiation sources in An Hui Huadong photoelectric technology institute(2016).

    [57] Y A Grishin, M R Fuchs, A Schnegg et al. Pulsed Orotron - A new microwave source for submillimeter pulse high-field electron paramagnetic resonance spectroscopy. Review of Scientific Instruments, 75, 2926-2936(2004).

    [58] Y Zhou, Y Zhang, S Liu. Electron-Beam-Driven Enhanced Terahertz Coherent Smith-Purcell Radiation Within a Cylindrical Quasi-Optical Cavity. IEEE Transactions on Terahertz Science and Technology, 262-267(2016).

    [59] W Liu, Y Lu, W Lin et al. A multimode terahertz-Orotron with the special Smith–Purcell radiation. Applied Physics Letters, 108, 97-105(2016).

    [60] R Q Twiss, J A Roberts. Electromagnetic radiation from electrons rotating in an ionized medium under the action of a uniform magnetic field. Australian Journal of Physics, 11, 424-432(1958).

    [61] R Q Twiss. Radiation transfer and the possibility of negative absorption in radio astronomy. Australian Journal of Physics, 11, 567-579(1958).

    [62] J Schneider. Stimulated emission of radiation by relativistic electrons in a magnetic field. Phys. Rev. Lett., 2, 504-508(1959).

    [63] J H Booske, C L Kory, C D Joye et al. Vacuum Electronic High Power Terahertz Sources. IEEE transactions on terahertz science and technology, 1, 54-75(2011).

    [64] V A Flyagin, A G Luchinin, G S Nusinovich. Submillimeter-wave gyrotrons: Theory and experiment. International Journal of Infrared&Millimeter Waves, 4, 629-637(1983).

    [65] M Y Glyavin, A G Luchinin, G Y Golubiatnikov. Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field. Physical Review Letters, 100, 015101(2008).

    [66] A G Luchinin, Y V Rodin, N Novgorod. Generation of 5 kW/1 THz coherent radiation from pulsed magnetic field gyrotron(2010).

    [67] S Spira-Hakkarainen, K E Kreischer, R J Temkin. Submillimeter-wave harmonic gyrotron experiment. IEEE Transactions on Plasma Science, 18, 334-342(2002).

    [68] T Notake, T Saito, Y Tatematsu et al. Development of a Novel High Power Sub-THz Second Harmonic Gyrotron. Physical Review Letters, 103, 225002(2009).

    [69] T. Song et al. Experimental Investigations on a 500GHz Continuously Frequency-Tunable Gyrotron. IEEE Electron Device Letters, 42, 1232-1235(2021).

    [70] T Idehara, S Mitsudo, I Ogawa. Development of High-Frequency, Highly Stable Gyrotrons as Millimeter to Submillimeter Wave Radiation Sources. IEEE Transactions on Plasma Science, 32, 910-916(2004).

    [71] K Sako, Y Kobayashi, S Hashimoto et al. Development of a material heating system by using a 300 GHz gyrotron FU CW I(2009).

    [72] Z C Ioannidis, K A Avramidis, T Rzesnicki et al. Generation of 1.5 MW–140 GHz Pulses With the Modular Pre-Prototype Gyrotron for W7-X. IEEE Electron Device Letters, 42, 939-942, June 2021.

    [73] L R Becerra, G J Gerfen, R J Temkin et al. Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Physical Review Letters, 71, 3561-3564(1993).

    [74] T Idehara, I Ogawa, H Mori et al. A THz Gyrotron FU CW III with a 20T superconducting magnet(2009).

    [75] W Fu, X Guan, Y Yan. Generating High-Power Continuous-Frequency Tunable Sub-Terahertz Radiation From a Quasi-Optical Gyrotron With Confocal Waveguide. IEEE Electron Device Letters, 41, 613-616(2020).

    [76] R M Rozental, S V Samsonov, A A Bogdashov et al. High-Power Tunable Source of Chaotic Radiation Based on a Ka-Band Helical Gyro-BWO. IEEE Electron Device Letters, 42, 1394-1397, Sept.(2021).

    [77] Y Xu, H Li, Y Mao et al. Proof-of-principle Experiment of a 20-kW-Average-Power Ka-band Gyro-Traveling Wave Tube with a Cut-off Waveguide section. IEEE Electron Device Letters, 1-1(2020).

    [78] S V Samsonov, G G Denisov, I G Gachev et al. CW Operation of a W-band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube. IEEE Electron Device Letters, PP, 1-1(2020).

    [79] Z Zeng, L Zhou, W Li et al. Design and optimization of a W-band extended interaction klystron amplifier, 1-2(2015).

    [80] Z Qu, Z Zhang, Y Ding et al. Design and test of a W-band 100-watts extended interaction oscillator, 419-420(2018).

    [81] Y Wei, D Li, J Zhou et al. A High Power W-band Extended Interaction Klystron(2019).

    Shao-Jie CHANG, Zhen-Hua WU, Jie HUANG, Tao ZHAO, Di-Wei LIU, Min HU, Yan-Yu WEI, Yu-Bin GONG, Sheng-Gang LIU. The research progress of vacuum electron device in terahertz band[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021352
    Download Citation